• 제목/요약/키워드: Protein methylation

검색결과 207건 처리시간 0.029초

서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색 (Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell)

  • 진형종
    • 미생물학회지
    • /
    • 제47권3호
    • /
    • pp.200-208
    • /
    • 2011
  • 임상에서 가장 문제가 되는 MLS (macrolide-lincosamidestreptogramin B) 항생제 내성은 Erm 단백질에 의하여 23S rRNA의 A2058에 dimethylation시킴으로써 MLS 항생제의 부착능을 저해함으로써 나타내는 내성이다. ErmSF는 다른 Erm 단백질과 달리 매우 긴 N-terminal end region (NTER)을 가지고 있으며 RNA에 잘 부착되는 것으로 알려진 arginine이 25%를 차지하고 있다. 특히 NTER의 점차적인 제거는 이에 따른 점차적인 활성의 감소 그리고 이의 완전한 제거는 98%의 활성소실을 가져다 주는 것으로 밝혀져서 단순 부착에 의한 활성에의 기여를 암시하고 있다. 뿐만 아니라 NTER 다음에 붙어 있는 아미노산은 제거되었을 때 활성이 소실되는 매우 중요한 아미노산임이 밝혀졌다. 이러한 사실에 근거, 서로 다른 복제원점을 가짐으로써 동일한 세포 내에 존재할 수 있으며 발현 체계가 동일하나 copy수가 차이가 있어서 단백질 발현 양에 차이를 가져다 주는 새로운 단백질 동시 발현체계를 개발하고 이를 적용하여 NTER 함유 펩타이드를 copy수가 많은 pET23b 체계의 담체에서, ErmSF는 copy수가 적은 pACYC184 담체 체계에서 발현 시킴으로써 펩타이드가 한 세포 내에서 ErmSF 보다 훨씬 더 많이 발현되도록 하여 이 펩타이드가 ErmSF의 활성을 저해할 수 있는지 확인하였다. 계획된 대로 IPTG에 의한 유도 없이도 펩타이드가 ErmSF보다 세포 내에서 훨씬 많이 발현되었다. 그러나 생체 내에서는 그 활성의 저해를 확인 할 수 없었다. 따라서 ErmSF의 활성은 NTER 펩타이드의 단순한 부착에 의해서 이루어지는 것이 아니라 conformational change 등의 역동적인 상호작용을 통하여 이루어지는 것으로 사료되었다. 따라서 ErmSF와 23S rRNA와의 복합체 구조의 규명 그리고 NTER과 ErmSF protein body의 부착양식에 대한 구체적인 생화학적 규명이 이루어지면 이러한 접근법은 이 단백질의 억제제를 창출하는데 기여를 할 수 있을 것으로 사료된다.

Metabolic Engineering for Resveratrol Derivative Biosynthesis in Escherichia coli

  • Jeong, Yu Jeong;Woo, Su Gyeong;An, Chul Han;Jeong, Hyung Jae;Hong, Young-Soo;Kim, Young-Min;Ryu, Young Bae;Rho, Mun-Chual;Lee, Woo Song;Kim, Cha Young
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.318-326
    • /
    • 2015
  • We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.

Characterization of the Immunologically Active Components of Glycyrrhiza uralensis Prepared as Herbal Kimchi

  • Hwang, Jong-Hyun;Lee, Kyong-Haeng;Yu, Kwang-Won
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 2003
  • A crude polysaccharide fraction (GU-3) from the roots of Glycyrrhiza uralensis (licorice root), a screened herbal plant used in the preparation of herbal kimchi, enhanced Peyer's patch mediated bone marrow cell proliferation and NK cell-mediated tumor cytotoxicity against Yac-1 cells. GU-3 was further purified by DEAE-Sepharose CL-6B yielding fractions designated as GU-3I, and 3IIa∼3IIe. GU-3IIa is mainly composed of arabinose, galactose and galacturonic acid, and showed the highest bone marrow cell proliferation activity. In addition, GU-3IIb had arabinose, galactose, rhamnose and galacturonic acid as the component sugars with a small quantity of protein; GU-3IIb also enhanced activity of NK cell-mediated tumor cytotoxicity. After these fractions were further fractionated via gel filtration on Sepharose CL-6B or Sephacryl S-300, two immunological active polysaccharides, GU-3IIa-2 and 3IIb-1 were purified from the respective fractions. GU-3IIa-2 mostly contained neutral sugars (75%) such as arabinose and galactose (molar ratio; 1.0 : 0.7) in addition to a considerable amount of galacturonic acid (20%), whereas GU-3IIb-1 was composed of arabinose, galactose, rhamnose and galacturonic acid (molar ratio; 0.3 : 0.5 : 0.1 : 1.0). Methylation analysis indicated that GU-3IIa-2 was composed mainly of terminal, 4- or 5-linked and 3,4- or 3,5-branched arabinose, 3-linked, 4-linked and 3,6-branched galactose, and terminal and 4-linked galacturonic acid whereas GU-3IIb-1 contained various glycosidic linkages such as terminal and 4- or 5-linked arabinose, 2,4-branched rhamnose, terminal and 4-linked galactose, and terminal and 4-galacturonic arid. Single radial gel diffusion indicated that only GU-3IIa-2 strongly reacted with β-D-glucosyl-Yariv antigen. These results suggest that bone marrow cell proliferating activity and enhancement of NK cell-mediated tumor cytotoxicity of GU-3 are caused by polysaccharides containing a pectic arabinogalactan (GU-3IIa-2) and pectic polysaccharide (GU-3IIb-1).

한국인의 비소세포폐암종에서 O6-methylguanine-DNA methyltransferase (MGMT)의 발현도 분석 (Immunohistochemical Expression of O6-methylguanine-DNA Methyltransferase (MGMT) in Korean Patients with Non-Small Cell Lung Cancer.)

  • 이경은;홍영습;최필조;노미숙
    • 생명과학회지
    • /
    • 제18권4호
    • /
    • pp.580-584
    • /
    • 2008
  • 본 연구에서는 손상된 DNA를 수복하는 중요한 효소로 알려진 $O^6-methylguanine-DNA$ methyltransferase (MGMT)발현의 의미를 비소세포폐암종에서 면역조직화학 염색법으로 알아보고자 하였다. 동아대학교 의료원에서 2001년부터 2004년까지 외과적으로 적출한 폐암종 조직 중 비소세포암종으로 진단된 74예를 연구대상으로 하였다. 면역염색 결과, MGMT 발현은 총 74예 중 49예(66.2%)에서 양성을 보였으며, 25예(33.8%)에서 단백 소실을 보였다. 조직학적 유형에 따른 결과를 살펴보면, 편평세포암종은 8/39예(20.5%)에서 단백 소실이 보였고, 샘암종은 17/35예(48.6%)에서 단백 소실이 관찰되어 통계적으로 유의한 차이가 관찰되었다(p=0.021). 하지만 나이, 성별, 흡연유무, 종양 크기, T 병기 및 림프절 전이에 따른 유의한 차이는 관찰되지 않았다(p>0.05). MGMT 단백 발현 소실은 특히 promoter 메틸화와 연관되어 종양에서 관찰된다고 알려져 있으므로, 향후 연구에서는 비소세포폐암종의 MGMT 단백 소실에 대한 임상적 의의를 밝히기 위하여 promoter 메틸화 연구가 추가적으로 수행되어져야 될 것으로 사료된다.

N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats

  • Ronghuan Yin;Ronglan Yin;Man Bai;Yixing Fan;Zeying Wang;Yubo Zhu;Qi Zhang;Taiyu Hui;Jincheng Shen;Siyu Feng;Wenlin Bai
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.555-569
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. Methods: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6A-deficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. Results: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHF-stem cells. We further demonstrated that the internal m6A modification within circRNA-ZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNA-ZNF638. Conclusion: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

Steap4에 의한 지방세포분화 촉진 기전 (Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors)

  • 심현아;신주연;김지현;정명호
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1092-1100
    • /
    • 2020
  • Six-transmembrane epithelial antigen of prostate 4 (Steap4)는 철과 구리를 환원하여 철과 구리의 세포내 유입에 관여하는 금속 환원효소로, 구리 철의 항상성 뿐만 아니라 염증, 포도당 대사, 지질 대사에도 중요한 역할을 한다. 최근에 Steap4가 지방세포의 분화를 촉진한다는 보고가 발표되었으나, 이에 관련된 분자적 기전에 대해서는 알려지지 않았다. 그래서, 본 연구에서는 Steap4에 의한 지방세포분화 촉진에 관련된 기전을 연구하였다. 이를 위해 3T3-L1 백색지방세포, 불멸화된 갈색지방세포(iBA) 및 생쥐의 배아 섬유아 세포인 C3H10T1/3 세포에서 Steap4을 감소시킨 후 지방세포분화 초기단계에 관련된 신호들을 분석하였다. Steap4을 shRNA로 감소시켰을 때 지방세포분화 초기 단계에서 3종류 지방세포의 세포 증식이 억제되었으며, 세포주기 관련 단백질인 cyclin A, cyclin D 그리고 cdk2의 발현은 감소하는 반면 세포주기 저해 단백질인 p21과 p27의 발현은 증가하였다. 또한 세포주기 관련 신호인 p38, ERK 그리고 Akt의 활성화는 억제되었다. 한편 지방세포분화 초기 단계에 관여하는 지방세포분화 전사인자들을 분석하였을 때, Steap4의 감소는 지방세포분화 활성 전사 인자인 C/EBPβ, KLF4의 발현을 저해하는 반면, 지방세포분화 억제 전사 인자인 KLF2, KLF3 그리고 GATA2의 발현은 증가시켰다. 또한 Steap4의 과발현은 C/EBPβ promoter에 존재하는 전사억제 히스톤 표지자인 H3K9me2과 H3K27me3을 감소시켰다. 따라서, 이상의 결과를 종합하면 Steap4는 지방세포분화 초기단계인 mitotic clonal expansion을 촉진하고 지방세포분화 전사인자들의 발현을 조절함으로써, 지방세포분화를 촉진시킴을 알 수 있었다.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF