• Title/Summary/Keyword: Protein kinase D

Search Result 391, Processing Time 0.033 seconds

Studies on the Differentiation of Skeletal Muscle Cells in vitro:Protein Kinase C in the Differentiation of Skeletal Muscle Cells (근세포 분화에 관한 연구 : 근세포 분화에 있어서 Protein Kinase C)

  • 최원철;김한도;김정락
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.131-141
    • /
    • 1991
  • Treating 12-O-tetradecanoyIphorboI 13-acetate -TPA) or platelet~derived growth factor(PDGF), the signal transduction of protein Idnase C (PKC) is occurred by the phosphoryladon. However the targeting proteins phosphorylated by PKC were found to be different proteins in molecular weights when WA or PDGF wa~ treated to the myoblast. In the WA-treated myoblast cells, the protein of Mr. 20 I(d was phosphorylated. In the PDGF-treated cells, the protein of Mr. 40 Kd was phosphrylated, while the protein of Mr. 20 Kd which phosphorylated in the WA-treatment was dephosphorylated. These results indicate that not only WA and PDGF &e different in activating the signal transduction pathways, but also they may involve in the down reguladon of PI(C during the long-term treatment But PDGF gave rise more rapidly down reguladon than in the case of WA. Using immunocytochemical approach, two disdnct PKC isozymes, PKC II and PKC III, have been localized in cytoplasm and both cytoplasm and nuclsolus, respectively. Ther'efore, the expression of two types of PKC in the myoblast suggests that the isozymes of PKC may involve in each different pathway of signal transduction or down-reguladon.

  • PDF

Molecular Cloning and NMR Characterization of the Nonreceptor Tyrosine Kinase PTK6 SH3-SH2-Linker Domain

  • Lee, Young-Min;Ahn, Kyo-Eun;Ko, Sung-Geon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1043-1046
    • /
    • 2009
  • Human protein tyrosine kinase-6 (PTK6) is a member of the non-receptor protein tyrosine kinase family and it is found in two-thirds of all breast tumors. Very recently, we proposed that the SH3 domain of PTK6 interacts with the linker region (Linker) between the SH2 and kinase domains, proving that the interaction between SH3 domain and Linker plays an important role in auto-inhibition mechanism. Residues from 1 to 191 corresponding region of SH3-SH2-Linker (SH32L) of PTK6 was cloned into the pET32a expression vector with Tobbaco etch virus (TEV) protease enzyme site by sequence homology and 3D structural model. The purified PTK6-SH32L was determined as a monomer conformation in solution. The amide proton resonances in the $^{15}N-^{1}H$ 2D-HSQC spectrum suggest that PTK6-SH32L possesses disordered structural region of the flexible/unstructured linker region. In addition, the backbone amide proton chemical shifts of the SH3 domain in the PTK6-SH32L differ from that of the independent domain, indicating that intra-molecular interaction between SH3 and Linker in the PTK6-SH32L is present.

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.

Secretion of MCP-1, IL-8 and IL-6 Induced by House Dust Mite, Dermatophagoides pteronissinus in Human Eosinophilic EoL-1 Cells

  • Lee, Ji-Sook;Kim, In-Sik;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • The house dust mite (Dermatophagoides pteronissinus) is an important factor in triggering allergic diseases. The function of eosinophils, particularly in the production of cytokine or chemokine, is critical in understanding the pathogenesis of inflammatory diseases. In this study, we examined whether D. pteronissinus extract (DpE) induces the expression of monocyte chemotactic protein 1 (MCP-1)/CCL2, IL-8/CXCL8, and IL-6 that mediate in the infiltration and activation of immune cells and in its signaling mechanism in the human eosinophilic cell line, EoL-1. DpE increased the mRNA and protein expression of MCP-1, IL-8, and IL-6 in a time- and dose-dependent course in EoL-1 cells. In our experiments using signal-specific inhibitors, we found that the increased expression of MCP-1, IL-8, and IL-6 due to DpE is associated with Src family tyrosine kinase and protein kinase C $\delta$ (PKC $\delta$). In addition, the activation of extracellular signal-regulated kinase (ERK) is required for MCP-1 and IL-8 expression while p38 mitogen-activated protein kinase (MAPK) is involved in IL-6 expression. DpE induced the phosphorylation of ERK and p38 MAPK. PP2, an inhibitor of Src family tyrosine kinase, and rottlerin, an inhibitor of PKC $\delta$, blocked the activation of ERK and p38 MAPK. DpE induces the activation of ERK and p38 MAPK via Src family tyrosine kinase and PKC $\delta$ for MCP-1, IL-8, or IL-6 production. Increased cytokine release due to the house dust mite and the characterization of its signal transduction may be valuable in understanding the eosinophil-related pathogenic mechanism of inflammatory diseases.

Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants (Chromophore 형성과 rhodopsin kinase 활성을 이용한 항활성 로돕신 mutant의 분석)

  • Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.783-790
    • /
    • 2007
  • G protein coupled receptors (GPCRs) transmit various extracellular signals into the cells. Upon binding of the ligands, conformational changes in the extracellular and/or transmembrane (TM) domains of CPCRs were propagated into the cytoplasmic (CP) domain of the molecule leading to the activation of their cognate heterotrimeric C proteins and kinases. Constitutively active GPCR mutants causing the activation of C Protein signaling even in the absence of ligand binding are of interest for the study of activation mechanism of GPCRs. Two classes of constitutively active mutations, categorized by their effects on the salt bridge between Ell3 and K296, were found in the TM domain of rhodopsin. Opsin mutants containing combinations of the mutations were constructed to study the conformational changes required for the activation of rhodopsin. Rhodopsin chromophore regenerated with 11-cis-retinal showed a thermal stability inversely correlated with its constitutive activity. In contrast, rhodopsin mutants exhibited a binding affinity to an agonist, all-trans-retinal, in a constitutive activity-dependent manner. In order to test whether the conformational changes responsible for the activation of trans-ducin (Gt) are the same as the conformation required for the recognition of rhodopsin kinase, analysis of the mutants were carried out with phosphorylation by rhodopsin kinase. Rhodopsin mutants containing combinations of different classes of the mutations showed a strong synergistic effect on the phosphorylation of the mutants in the dark as similar to that of Gt activation. The results suggest that at least two or three kinds of segmental and independent conformational changes are required for the activation of rhodopsin and the conformational changes responsible for activating rhodopsin kinase and Gt are similar to each other.

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

The Role of Phosphatidylinositol 3-kinase and Mitogenic Activated Protein Kinase on the Differentiation of Ovine Preadipocytes

  • Choi, K.C.;Shrestha, S.G.;Roh, S.G.;Hishikawa, D.;Kuno, M.;Tsuzuki, H.;Hong, Y.H.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1199-1204
    • /
    • 2003
  • The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3 kinase) and the mitogenactivating protein (MAP) kinase pathway on the differentiation of ovine preadipocytes. In order to investigate this issue, we monitored glycerol 3-phosphate dehydrogenase (GPDH) activity during differentiation with specific inhibitors of PI3 kinase and MAP kinase-Erk kinase, LY294002 and PD098059, respectively. The preadipocytes, which were obtained from ovine subcutaneous adipose tissues, were proliferated to confluence and then differentiated to adipocytes in differentiation medium with each inhibitor for 10 days. The confluent preadipocytes and differentiated adipocytes at days 3, 7 and 10 were harvested for assay of GPDH activity. LY294002 inhibited the differentiation program in dose- and day-dependent manners during 10 days of differentiation. PD098059 did not affect GPDH activity during differentiation. Furthermore, the expression of peroxisome proliferator-activated receptor ${\gamma}2$ (PPAR-${\gamma}2$), the representative early gene of differentiation, was markedly reduced by LY294002 treatment, although PD098059 did not change it. Our results demonstrated that the activation of PI3 kinase contributes to the differentiation process of ovine preadipocytes.

Epigallocatechin Gallate Activates Phospholipase D in Glioma Cells (교세포에서 Epigallocatechin Gallate에 의한 포스포리파제 D의 활성화)

  • Kim, Shi-Yeon;Kim, Joonmo;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2003
  • Epigallocatechin-3 Gallate (EGCG), a major constituent of green tea, has attracted increasing interest because of its many reported health benefits. Here we demonstrate for the first time that EGCG stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-\gama1$ mutant, and was dependent on intracellular $Ca^{ 2+}$, and possibly involved $Ca^{ 2+}$ calmodulin-dependent protein kinase II (CaM kinase II). Interestingly, EGCG induced translocation of PLC-\gama1$ from the cytosol to the membrane and PLC-\gama1$interaction with PLD1. Taken together, these results demonstrate for the first time that in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving a PLC-\gama1$ (inositol 1,4,5-trisphosphate-$Ca^{ 2+}$)-CaM kinase II-PLD pathway.

TNF$\beta$ Induces Cytotoxicity of Antibody-Activated CD$4^+$T-lymphocytes Against Herpes Virus-Infected Target Cells

  • Choi, Sang Hoon
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • We have extended our previous work that cross-linking CD4 molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$We have extended our previous work that cross-linking CD$4^+$ molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$ T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD$4^+$T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4 molecules. The CD$4^+$cross-linking failed to induce effector cell proliferation or the transcription of TNF${\beta}$ Upregulation of TNF${\beta}$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF${\beta}$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased p$56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD4T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4molecules. The CD4 cross-linking failed to induce effector cell proliferation or the transcription of TNF$\beta$. Upregulation of TNF$\beta$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF$\beta$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased $56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.