• Title/Summary/Keyword: Protein expression and purification

Search Result 264, Processing Time 0.042 seconds

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL (백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Soung-Min;Kim, Yun-Hee;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.

Purification and Characterization of Lactate Dehydrogenase Isozymes in Channa argus (가물치(Channa argus) 젖산탈수소효소 동위효소들의 정제 및 특성)

  • Park, Eun-Mi;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.260-268
    • /
    • 2010
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes in tissues from Channa argus were purified and characterized by biochemical, immunochemical and kinetic methods. The activity of LDH in skeletal muscle was the highest at 380.4 units and those in heart, eye and brain tissues were 13.4, 3,5 and 5.4 units, respectively. Citrate synthase (EC 4.1.3.7, CS) activity in heart tissue was the highest at 20.7 units. LDH/CS in skeletal muscle, heart, eye and brain tissues were 172.9, 0.6, 0.32 and 0.47. Protein concentration in skeletal muscle tissue was 14.7 mg/g and specific activities of LDH in skeletal muscle, heart, eye and brain tissues were 25.88, 0.79, 0.31 and 1.38 units/mg, respectively. Therefore, skeletal muscle tissue was anaerobic and heart tissue was aerobic. The LDH isozymes in tissues were identified by polyacrylamide gel electrophoresis, immunoprecipitation and Western blot with antiserum against $A_4$, $B_4$, and eye-specific $C_4$. LDH $A_4$, $A_3B$, $A_2B_2$. $AB_3$ and $B_4$ isozymes were detected in every tissue, $C_4$, $AC_3$, $A_2C_2$ and $A_3C$ were detected in eye tissue, and $A_3C$ was found in brain tissue. LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, $B_4$, eye-specific $C_4$ isozymes were purified by affinity chromatography and Preparative PAGE Cells. The LDH $A_4$ isozyme was purified in the fraction from elution with $NAD^+$ containing buffer of affinity chromatography. Eye-specific $C_4$ isozyme was eluted right after $A_4$, after which $B_4$ isozyme was eluted with plain buffer. As a result, one part of molecular structures in $A_4$, $B_4$ and eye-specific $C_4$ were similar, but were different from each other in $B_4$ and $C_4$. Therefore the subunit A may be conservative in evolution, and the evolution of subunit B seems to be faster than that of subunit A. The activity of LDH $A_4$, $A_2B_2$, $B_4$, and eye-specific $C_4$ isozymes remained at 39.98, 21.28, 19.67 and 16.87% as a result of the inhibition by 10 mM of pyruvate, so the degree of inhibition was very high. The $Km^{PYR}$ values were 0.17, 0.27 and 0.133 mM in $A_4$, $B_4$ and eye-specific $C_4$ isozymes, respectively. The optimum pH of LDH $A_4$, $B_4$, eye-specific $C_4$, $A_2B_2$, $A_3B$, and $AB_3$ were pH 6.5, pH 8.5, pH 5.5, pH 6.0-6.5, pH 5.0 and pH 7.5. The $A_4$ and heterotetramer isozymes stabilized a broad range of pH. Especially, LDH activities in skeletal muscle tissue were high, resulting in a high degree of muscle activity.LDH metabolism in eye tissue seems to be converted faster from pyruvate to lactate by eye-specific $C_4$ isozyme as eye-specific $C_4$ have the highest affinity for pyruvate, and right after the conversion, oxidation of lactate was induced by $A_4$ isozyme. It was found that expression of Ldh-C, affinity to substrate and reaction time of $C_4$ isozyme were different according to the ecological environmental and feeding capturing patterns.