• Title/Summary/Keyword: Protein engineering

Search Result 2,930, Processing Time 0.032 seconds

Simple Purification of BA-RGD Protein Based on CaCl2/EDTA Treatment and Inclusion Body Washing (CaCl2/EDTA 및 비이온성 계면활성제 활용 Inclusion Body 정제법을 이용한 BA-RGD 단백질의 생산)

  • Song, Wooho;Byun, Chang Woo;Yoon, Minho;Eom, Ji Hoon;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.291-295
    • /
    • 2015
  • The limited productivity of natural shell matrix proteins has hampered the investigation of their biochemical properties and practical applications, although biominerals in nature obtained by organic-inorganic assemblies have attractive mechanical and biological properties. Here, we prepared a vector for the expression of a fusion protein of a shell matrix protein from Pinctada fucata (named as GRP_BA) with the GRGDSP residue. The fusion protein of BA-RGD was simply produced in E. coli and purified through sequential steps including the treatment with $CaCl_2$ and EDTA solution for cell membrane washing, mechanical cell disruption and the application of non-ionic surfactant of Triton X-100 for BA-RGD inclusion body washing. The production yield was approximately 60 mg/L, any other protein band was not observed in SDS-PAGE and it was estimated that above 97% endotoxin was removed compared to the endotoxin level of whole cell. This study showed this simple and easy purification approach could be applied to the purification of BA-RGD fusion protein. It is expected that the protein could be utilized for the preparation of biominerals in practical aspects.

Co-Expression of Protein Tyrosine Kinases EGFR-2 and $PDGFR{\beta}$ with Protein Tyrosine Phosphatase 1B in Pichia pastoris

  • Pham, Ngoc Tu;Wang, Yamin;Cai, Menghao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Co-expression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and $PDGFR{\beta}$ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and $PDGFR{\beta}$ fusion proteins were purified by $Ni^{2+}$ affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and $PDGFR{\beta}$ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics.

An Algorithm for Predicting Binding Sites in Protein-Nucleic Acid Complexes

  • Han, Nam-Shik;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.17-25
    • /
    • 2003
  • Determining the binding sites in protein-nucleic acid complexes is essential to the complete understanding of protein-nucleic acid interactions and to the development of new drugs. We have developed a set of algorithms for analyzing protein-nucleic acid interactions and for predicting potential binding sites in protein-nucleic acid complexes. The algorithms were used to analyze the hydrogen-bonding interactions in protein-RNA and protein-DNA complexes. The analysis was done both at the atomic and residue level, and discovered several interesting interaction patterns and differences between the two types of nucleic acids. The interaction patterns were used for predicting potential binding sites in new protein-RNA complexes.

  • PDF

What Is the Role of Thermodynamics on Protein Stability\ulcorner

  • Gummadi, Sathyanarayana N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • The most challenging and emerging field of biotechnology is the tailoring of proteins to attain the desired characteristic properties. In order to increase the stability of proteins and to study the function of proteins, the mechanism by which proteins fold and unfold should be known. It has been debated for a long time how exactly the linear form of a protein is converted into a stable 3-dimensional structure. The literature showed that many theories support the fact that protein folding E5 a Thermodynamically controlled process. It is also possible to predict the mechanism of protein deactivation and Stability to an extent from thermodynamic studies. This article reviewed various theories that have been proposed to explain the process of protein folding after its biosynthesis in ribosomes. The theories of the determination of the thermodynamic properties and the interpretation of thermodynamic data of protein stability are 3150 discussed in this article.

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

Purification and Characterization of a Novel Antifungal Protein from Paenibacillus macerans PM1 Antagonistic to Rice Blast Fungus, Pyricularia oryzae

  • Bae, Dong-Won;Kawk, Weon-Sik;Lee, Joon-Taek;Son, Dae-Young;Chun, Sung-Sik;Kim, Hee-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.805-810
    • /
    • 2000
  • An antifungal protein antagonistic to the rice blast fungus, Pyricularia oryzae was purified from Paenibacillus macerans PM-1 by ammonium sulfate fractionation, Q Sepharose Fast Flow column chromatography, Phenyl Sepharose CL-4B column chromatography and Superose 12 gen filtration. An apparent molecular mass of the purified antifungal protein was determined as 8 kDa by SDS-PAGE and 9 kDa by analytical gel filtration, respectively, suggesting that the purified protein is a monomer. The antifungal protein was stable at pH range from 7-12 and up to $100^{\circ}C$. The protein was also stable at 0.1-1% Tween 20 and Triton X-100. The N-terminal amino acid sequence of the antifungal protein was Thr-Glu-Leu-Pro-Leu-Gly-Ile-Val-Met-Asp-Lys-Tyr-Thr-Asp-Ala-Phe-Lys-Phe-Asp-Met-Phe. Comparison of the determined sequence with other peptide and DNA sequences did not reveal homology at all. Therefore, the purified antifungal protein was speculated to be a novel protein. The condidial germination in vitro of P. oryzae KJ301:93-39 by the purified protein ($5.9{\mu} g/ml$) was limited to $9{\pm}3.2%$ only, compared with $69{\pm}2.4%$ of the control. Ungerminated conidia were swollen at basa and mid cell by the purified protein. In vivo bioassay for inhibition of conidial germination of P. oryzae KJ 301, one of the most predominating racesin Korea. the purified protein ($5.9{\mu} g/ml$)strongly inhibited the conidial germination. The conidia, even though germinated, could not develop any further to produce appressoria efficiently.

  • PDF

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.

Development of Screening Method for the Soluble Recombinant Protein using β-Lactamase as a Fusion Partner (β-Lactamase 접합 단백질 발현 시스템을 이용한 가용성 재조합 단백질 탐색 기술 개발)

  • Lee, Jae-Hun;Hwang, Bum-Yeol;Kim, Byung-Gee;Lee, Sun-Gu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.624-629
    • /
    • 2009
  • It is the most important step to screen soluble and insoluble proteins when we attempt to improve the solubility of recombinant proteins through directed evolution approach. Here we show that the solubility of a recombinant protein in vivo can be examined by expressing the recombinant protein with beta-lactamase as a fusion partner. First we constructed an expression system which can produc a fusion protein with the C-terminal of beta-lactamase. Two soluble proteins, i.e. adenine deaminase and aspartate aminotransferase, and insoluble GlcNAc-2-epimerase were cloned into the developed expression vector, respectively. We investigated the effect of the expression of the three recombinant fusion proteins on the growth of E. coli, and confirmed that the solubilities of the recombinant proteins correlated with cell growth rates.

Fabrication and evaluation of label-free protein sensor for diagnosing acute myocardial infarction (급성 심근경색 검지를 위한 비표지식 단백질 센서 제작 및 검증에 관한 연구)

  • Cho, Younggeol;Kang, Ki-Won;Kim, Hyo-Kyum;Cho, Eikhyun;Kang, Shinill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.1
    • /
    • pp.28-31
    • /
    • 2013
  • We proposed a method to fabricate label-free protein sensor with sub-wavelength nanograting structures to be used for diagnosing acute myocardial infarction. A nickel stamp for the injection molding of nanograting integrated protein sensor was fabricated by electroforming process with high fidelity. By using metallic stamp, we replicated label-free protein sensor via injection molding, which is an outstanding method for low-cost and mass production of polymer products. Finally, we performed a feasibility test, examining cardiac troponin T (cTnT) and anti-cTnT interactions. From the results, we demonstrated that the fabricated protein sensor can provide information for the early and accurate detection of cardiac diseases such as acute myocardial infarction.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.