• 제목/요약/키워드: Protein engineering

검색결과 2,920건 처리시간 0.031초

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • 제3권2호
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

  • Hong, Chul-Suk;Park, Jae Hyung;Choe, Young-Jun;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3542-3546
    • /
    • 2014
  • Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with ${\alpha}$-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of ${\alpha}$-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type ${\alpha}$-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with ${\beta}$-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

Protein Carboxylmethylation in Porcine Spleen is Mainly Mediated by Class I Protein Carboxyl O-Methyltransferase

  • Cho, Jae-Youl;Kim, Sung-Soo;Kwon, Myung-Hee;Kim, Seong-Hwan;Lee, Hyang-Woo;Hong, Sung-Youl
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.206-216
    • /
    • 2004
  • The functional role of protein carboxylmethylation (PCM) has not yet been clearly elucidated in the tissue level. The biochemical feature of PCM in porcine spleen was therefore studied by investigating the methyl accepting capacity (MAC) of natural endogenous substrate proteins for protein carboxyl O-methyltransferase (PCMT) in various conditions. Strong acidic and alkaline-conditioned (at pH 11.0) analyses of the MAC indicated that approximately 65% of total protein methylation seemed to be mediated by spleen PCMT. The hydrolytic kinetics of the PCM products, such as carboxylmethylesters (CMEs), under mild alkaline conditions revealed that there may be three different kinds of CMEs [displaying half-times (T$_{1}$2/) of 1.1 min (82.7% of total CMEs), 13.9 min (4.6%), and 478.0 min (12.7%)], assuming that the majority of CME is base-labile and may be catalyzed by class I PCMT. In agreement with these results, several natural endogenous substrate proteins (14, 31 and 86 kDa) were identified strikingly by acidic-conditioned electrophoresis, and their MAC was lost upon alkaline conditions. On the other hand, other proteins (23 and 62 kDa) weakly appeared under alkaline conditions, indicating that PCM mediated by class II or III PCMT may be a minor reaction. The MAC of an isolated endogenous substrate protein (23-kDa) was also detected upon acidic-conditioned electrophoresis. Therefore, our date suggest that most spleen PCM may be catalyzed by class I PCMT, which participates in repairing aged proteins.

Correlation between Sestrin-2 and PERK Signaling in Matured Porcine Oocytes according to ER-stress during In Vitro Maturation

  • Park, Hyo-Jin;Kim, In-Su;Kim, Jin-Woo;Yang, Seul-Gi;Kim, Min-Ji;Koo, Deog-Bon
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.212-221
    • /
    • 2019
  • Sestrin-2 (SESN2) as a stress-metabolic protein is known for its anti-oxidative effects as a downstream factor of PERK pathways in mammalian cells. However, the expression patterns of SESN2 in conjunction with the UPR signaling against to ER stress on porcine oocyte maturation in vitro, have not been reported. Therefore, we confirmed the expression pattern of SESN2 protein, for which to examine the relationship between PERK signaling and SESN2 in porcine oocyte during IVM. We investigated the SESN2 expression patterns using Western blot analysis in denuded oocytes (DOs), cumulus cells (CCs), and cumulus-oocyte complexes (COCs) at 22 and 44 h of IVM. As expected, the SESN2 protein level significantly increased (p < 0.01) in porcine COCs during 44 h of IVM. We investigated the meiotic maturation after applying ER stress inhibitor in various concentration (50, 100 and 200 μM) of tauroursodeoxycholic acid (TUDCA). We confirmed significant increase (p < 0.05) of meiotic maturation rate in TUDCA 200 μM treated COCs for 44 h of IVM. Finally, we confirmed the protein level of SESN2 and meiotic maturation via regulating ER-stress by only tunicamycin (Tm), only TUDCA, and Tm + TUDCA treatment in porcine COCs. As a result, treatment of the TUDCA following Tm pre-treatment reduced SESN2 protein level in porcine COCs. In addition, SESN2 protein level significantly reduced in only TUDCA treated porcine COCs. Our results suggest that the SESN2 expression is related to the stress mediator response to ER stress through the PERK signaling pathways in porcine oocyte maturation.

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Purification and Acetylation of Protein X Subunit of Pyruvate Dehydrogenase Complex (PDC) from Bovine Kidney

  • Ryu, Ryu;Song, Byoung-J.;Hong, Sung-Youl;Huh, Jae-Wook
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.502-506
    • /
    • 1996
  • Protein X is one of the subunits of pyruvate dehydrogenase complex. The biological role of this protein has not been fully elucidated, mainly because of the difficulty in its dissociation from the tightly bound dihydrolipoamide acetyltransferase-protein X subcomplex. We have found that the detachment of protein X from acetyltransferase subunit can be easily accomplished by the cycles of freezing and thawing proces. Several lines of evidence including sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequence analysis and acetylation with $[2^{14}C]$ pyruvate confirmed that the purified protein is protein X. The purified intact form of protein X was acetylated by $[2^{14}C]$ pyruvate in the presence of py-ruvate dehydrogenase subunit.The acetylation efficiency of this protein was lower than that of acetyltransferase and was not affected by the presence of acetyltransferase.

  • PDF

Glucose regulated protein 78 promotes cell invasion via regulation of uPA production and secretion in colon cancer cells

  • Li, Zongwei;Zhang, Lichao;Li, Hanqing;Shan, Shuhua;Li, Zhuoyu
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.445-450
    • /
    • 2014
  • Glucose regulated protein 78 (GRP78) is frequently highly expressed in tumor cells, contributing to the acquisition of several phenotypic cancer hallmarks. GRP78 expression is also positively correlated with tumor metastasis, and promotes hepatocellular carcinoma cell invasion via increasing cell motility, however, other mechanisms involving the prometastatic roles of GRP78 remain to be elucidated. Here we report that forced GRP78 expression promotes colon cancer cell migration and invasion through upregulating MMP-2, MMP-9 and especially uPA production. These effects of GRP78 are mediated by enhancing the activation of ${\beta}$-catenin signaling. Interestingly, we identify that GRP78 interacts with uPA both in the cells and in the culture medium, suggesting that GRP78 protein is likely to directly facilitate uPA secretion via protein-protein interaction. Taken together, our findings demonstrate for the first time that besides stimulation of cell motility, GRP78 can act by increasing proteases production to promote tumor cell invasion.

Comparative Evaluation of Three Purification Methods for the Nucleocapsid Protein of Newcastle Disease Virus from Escherichia coli Homogenates

  • Tan Yan Peng;Ling Tau Chuan;Yusoff Khatijah;Tan Wen Siang;Tey Beng Ti
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.295-300
    • /
    • 2005
  • In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with $Ni^{2+}$ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was $1.26\%$ and $5.56\%$, respectively. It was demonstrated that EBA achieved the highest final protein yield of $9.6\%$ with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.