References
- Aswad, D. W., Protein carboxyl methylation in eukaryotes. Curr. Opin. Cell Biol., 1, 1182-1187 (1989) https://doi.org/10.1016/S0955-0674(89)80069-9
- Aswad, D. W. and Deight, E. A., Endogenous substrates for protein carboxyl methyltransferase in cytosolic fractions of bovine brain. J. Neurochem., 41, 1702-1709 (1983) https://doi.org/10.1111/j.1471-4159.1983.tb00883.x
- Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 42, 248-254 (1976)
- Clarke S., Aging as war between chemical and biochemical processes: Protein methylation and the recognition of age-damaged proteins for repair. Ageing Res. Rev., 2, 263-285 (2003) https://doi.org/10.1016/S1568-1637(03)00011-4
- Cho, J. Y., Kim, S., Lee, H. W. and HongS., Protein carboxyl O-methylation in porcine liver and testis. Yakhak Hoeji, 45, 46-54 (2001)
- Diliberto, E. J., JR, Viveros, O. H., and Axelrod, J., Subcellular distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: Possible role in exitation-secretion coupling. Proc. Natl. Acad. Sci. U.S.A., 73, 4050-4054 (1976) https://doi.org/10.1073/pnas.73.11.4050
- Diliberto, E. J. and Axelrod, J., Regional and subcellular distribution of protein carboxymethylase in brain and other tissues. J. Neurochem., 26, 1159-1165 (1976) https://doi.org/10.1111/j.1471-4159.1976.tb07001.x
- Fairbanks, G. and Avruch, J., Four gel systems for elec-trophoretic fractionation of membrane proteins using ionic detergents. J. Supramol. Struct., 1, 66-75 (1972) https://doi.org/10.1002/jss.400010110
- Farrar, C. and Clarke, S., Altered levels of S-adenosyl-methionine and S-adenosylhomocysteine in the brains of L-isoaspartyl (D-aspartyl) O-methyltransferase-deficient mice. J. Biol. Chem., 277, 27856-27863 (2002) https://doi.org/10.1074/jbc.M203911200
- Gagnon, C., Sherins, R. J., Philips, D. M., and Bardin, C. W., Deficiency of protein-carboxyl methylase in immotile spermatozoa of infertile men. N. Engl. J. Med., 306, 821-825 (1982) https://doi.org/10.1056/NEJM198204083061401
- Gingras, D., Menard, P., and Beliveau, R., Protein carboxyl methylation in kidney brush-border membranes. Biochem. Biophy Acta, 1066, 261-277 (1991) https://doi.org/10.1016/0005-2736(91)90196-F
- Hong, S. Y., Lee, H. W., Desi, S., Kim, S., and Paik, W. K., Studies on naturally occurring proteinous inhibitor for transmethylation reactions. Eur. J. Biochem., 156, 79-84 (1986) https://doi.org/10.1111/j.1432-1033.1986.tb09551.x
- Hrycyna, C. A. and Clarke, S., Modification of eukaryotic signaling protein by C-terminal methylation reactions. Pharmac. Ther., 59, 281-300 (1993) https://doi.org/10.1016/0163-7258(93)90071-K
- Ingrosso, D., D'angelo, S., di Carlo, E., Perna, A. F., Zappia, V., and Galletti, P., Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Eur. J. Biochem., 267, 4397-405 (2000) https://doi.org/10.1046/j.1432-1327.2000.01485.x
- Janson, C. A. and Clarke, S., Identification of aspartic acid as a site of methylation in human erythrocyte membrane protein. J. Biol. Chem., 255, 11640-11643 (1980)
- Kim, S., Cho, J., Lee, H. W., and Hong, S., Purification and properties of protein methylase II from porcine spleen. Kor. J. Biochem.,27, 179-184 (1994)
- Kim, S., Nochumson, S., Chin, W., and Paik, W. K., A rapid method for the purification S-adenosyl-L-methionine: Protein carboxyl O-methyltransferase by affinity chromatography. Anal. Biochem., 84, 415-422 (1978) https://doi.org/10.1016/0003-2697(78)90059-3
- Kowluru, A., Seavey, S. E., Li, G., Sorenson, R. L., Weinhaus, A. J., Nesher, R., Rabaglia, M. E., Vadakekalam, J., and Metz, S. A., Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion. J. Clin. Invest., 98, 540-555 (1996) https://doi.org/10.1172/JCI118822
- Kowluru, A. and Amin, R., Inhibitors of post-translational modifications of G-proteins as probes to study the pancreatic beta cell function: potential therapeutic implications. Curr. Drug Targets Immune. Endocr. Metabol. Disord., 2, 129-139 (2002) https://doi.org/10.2174/1568008023340668
- Krebs, E. G. and Beavo, J. A., Phosphorylation-dephosphory-lation of enzymes. Annu. Rev. Biochem., 48, 923-959 (1979) https://doi.org/10.1146/annurev.bi.48.070179.004423
- Kwon, M., Jung, K, Lee, H. Y., Lee, H. W., and Hong, S., Purification and characterization of protein methylase II inhibitor from procine liver. Korean Biochem. J., 27, 569-575 (1994)
- Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-683 (1970) https://doi.org/10.1038/227680a0
- Leonard, E. J., Skeel, A., Chiang, P. K., and Cantoni, G. L., The action of the adenosylhomocysteine hydrolase inhibitory 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem. Biophys. Res. Commun., 84, 102-109 (1978) https://doi.org/10.1016/0006-291X(78)90269-3
- Law, R. E., Stimmel, J. B., Damore, M. A., Carter, C., Clarke, S., and Wall, R., Lippolysaccharide-induced NF-kB activation in mouse 70Z/3 pre-B lymphocytes is inhibited by mevinolin and 5'-methyl thioadenosine: Role of protein isoprenylation and carboxyl methylation reaction. Mol. Cell Biol., 12, 103-111 (1992)
- Lee, J. and Stock, J., Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J. Biol. Chem., 268, 19192-19195 (1993)
- Najbauer, J., Johnson, B. A., and Aswad, D.W., Amplification and detection of substrates for protein carboxyl methyltrans-ferase in PC12 cells. Anal. Biochem., 197, 412-420 (1991) https://doi.org/10.1016/0003-2697(91)90413-N
- O'Connor, C. M. and Clarke, S., Carboxyl methylation of cytosolic proteins in intact human erythrocytes. J. Biol. Chem., 259, 2570-2578 (1984)
- O'Dea, R. F., Viveros, O. H., and Diliberto, E. J., Jr., Protein carboxyl methylation: Role in the regulation of cell functions. Biochem. Pharmacol., 30, 1163-1168 (1981) https://doi.org/10.1016/0006-2952(81)90292-6
- Paik, W. K. and Kim, S., Reevaluation of enzymology of protein methylation. In: Protein Methylation. Paik, W. K. and Kim, S. (Eds) CRC Press, Boca Raton, Florida, pp.1-2 (1990)
- Paik, W. K. and Kim S., Effect of methyl substitution on protein tertiary structure. J. Theor. Biol., 155,335-342 (1992) https://doi.org/10.1016/S0022-5193(05)80602-2
- Park, S., Lee, H. W., Kim, S., and Paik, W. K., A peptide inhibitor for S-adenosyl-L-methionine-dependent transmethylation reactions. lnt. J. Biochem., 1157-1164 (1993) https://doi.org/10.1016/0020-711X(93)90594-5
- Pike, M. C., Kredich, N. M., and Synderman, R, Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. Proc. Natl. Acad. Sci. U.S.A., 75, 3928-3932 (1978) https://doi.org/10.1073/pnas.75.8.3928
- Rao, A. and Reithmeier, R. A., Reactive sulfhydryl groups of the band 3 polypeptide from human erythroycte membranes. Location in the primary structure. J. Biol. Chem., 254, 6144-6150 (1979)
- Rodriguez, A. B., Barriga, C., and De la Fuente, M., Mechanisms of action involved in the chemoattractant activity of three beta-Iactamic antibiotics upon human neutrophils. Biochem. Pharmacol., 41, 931-936 (1991) https://doi.org/10.1016/0006-2952(91)90198-E
- Seo, D. W., Kim, Y. K., Cho, E. J., Han, J. W., Lee, H. Y., Hong, S., and Lee, H. W., Oligosaccharide-linked acyl carrier protein, a novel transmethylase inhibitor, from porcine liver inhibits cell growth. Arch. Pharm. Res., 25, 463-468 (2002) https://doi.org/10.1007/BF02976603
- Terwilliger, T. C. and Clarke, S., Methylation of membrane protein in human erythrocytes. J. Biol. Chem., 257, 3067-3076 (1981)
- Veeraragavan, K. and Gagnon, C., Mammalian protein methylesterase, Biochem. J., 260, 11-17 (1989)
- Vafai, S. B. and Stock, J. B., Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer's Disease. FEBS Lett., 518, 1-4 (2002) https://doi.org/10.1016/S0014-5793(02)02702-3
- Vincent, P. L. and Siegel, F. L., Carboxylmethylation of calmodulin in cultured pituitary cells. J. Neurochem., 49, 1613-1622 (1987) https://doi.org/10.1111/j.1471-4159.1987.tb01035.x
- Winter-Vann, A. M., Kamen, B. A., Bergo, M. O., Young, S. G., Melnyk, S., James, S. J., and Casey, P. J., Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. Proc. Natl. Acad. Sci. U. S. A., 100, 6529-6534 (2003) https://doi.org/10.1073/pnas.1135239100
- Xie, H. and Clarke, S., Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J. Biol. Chem., 269, 1981-1984 (1994)
- Yamane, H. K., Farnsworth, C. C., Xie, H., Evans, T., Howald, W. N., Gelb, M. H., Glomset, J. A., Clarke, S., and Fung, B. K. K., Membrane binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl)cysteine methyl ester at its carboxyl terminus. Proc. Natl. Acad. Sci. U.S.A., 88, 286-290 (1991) https://doi.org/10.1073/pnas.88.1.286
- Zolnierowicz, S., Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem. Pharmacal., 60,1225-1235 (2000) https://doi.org/10.1016/S0006-2952(00)00424-X