• Title/Summary/Keyword: Protein delivery

Search Result 293, Processing Time 0.024 seconds

Transdermal Permeation Behavior of FITC-BSA using Microneedle (마이크로니들을 이용한 FITC-BSA의 경피투과 거동)

  • Kim, Yun-Tae;Young, Oh-A;Lee, Jun-Hee;Ahn, Sik-Il;Park, Jong-Hak;Lee, Han-Koo;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.357-363
    • /
    • 2008
  • Penetration rate of large molecule through skin is very low due to the barrier effect of stratum corneum. Novel microneedle treatment device with roll was designed for transdermal delivery of large molecular drugs such as vaccine and protein drugs. The permeation rates of FITC labelled bovine serum albumin (FITC-BSA) as a model protein were determined using modified Franz diffusion cell and hairless mouse skin which were treated by hydrogel or solution containing FITC-BSA. Fluorescent spectrophotometer was used to analyze the concentration of FITC-BSA. Microscope using fluorescent filter was used to capture the image and location of FITC-BSA in the skin. We confirmed that permeation rate of BSA was increased with the treatment by microneedle and was increased by the increasing frequency of treatment. Furthermore, the permeation rate observed from hydrogel treated skin was significantly higher than that from solution treated skin.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

Mechanism of FHIT-Induced Apoptosis in Lung Cancer Cell Lines (폐암 세포주에서 FHIT 유전자 이입에 의한 Apoptosis의 기전)

  • Yoo, Jung Sun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.450-464
    • /
    • 2004
  • Background : The FHIT (fragile histidine triad) gene is a frequent target of deletions associated with abnormal RNA and protein expression in lung cancer. Previous studies have shown FHIT gene transfer into lung cancer cell line lacking FHIT protein expression resulted in inhibition of tumor cell growth attributable to the induction of apoptosis and reversion of tumorigenecity. However, the mechanism of the tumor suppressor activity of the FHIT gene and the cellular pathways associated with its function are not completely understood. Methods : To gain insight into the biological function of FHIT, we compared the NCI-H358 cell line with its stable FHIT transfectants after treatment with cisplatin or paclitaxel. We investigated the effects of FHIT gene expression on cell proliferation, apoptosis, and activation of caspase system and Bcl-2 family. The induction of apoptosis was evaluated by using DAPI staining and flow cytometry. Activation of caspases and Bcl-2 members was evaluated by Western blot analysis. Results : A significantly increased cell death was observed in FHIT transfectants after cisplatin or paclitaxel treatment and this was attributable to the induction of apoptosis. Remarkable changes in caspases and Bcl-2 family were observed in the transfected cells as compared with the control cells after treatment with paclitaxel. Activation of caspase-3 and caspase-7 was markedly increased in cells expressing FHIT. Expression level of Bcl-2 and Bcl-xL protein was significantly decreased and that of Bax and Bad protein was significantly increased in the transfected cells. Conclusion : FHIT gene delivery into lung cancer cells results in enhanced apoptosis induced by treatment with cisplatin or paclitaxel. The data suggest that apoptosis in FHIT-expressing cells could be related to activation of caspase pathway and Bcl-2 family.

Release proporties of ovalbumin from alginate microspheres prepared using the nozzle in spray dryer system

  • Park, Jeong-Eun;Lee, Chang-Moon;Park, Hee-Jung;Kim, Gwang-Yun;Rhee, Joon-Haeng;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.570-573
    • /
    • 2005
  • The spray method was chiefly used to prepare alginate microspheres. Additionally due to formation at mild conditions, the alginate microspheres were coated with chitosan. The particle size of alginate microspheres increased when the sodium alginate increased. Release pattern of OVA in alginate microspheres was evaluated at PBS buffer(pH 7.4) and HCl buffer(pH 1.2). Release rate of OVA from chitosan/alginate microsphere was also lower than that with the concentration of alginate in the microspheres, the amount of OVA released from alginate microspheres increased from alginate micorsphere. Therefore, the alginate microspheres can be prepared by spray rozzle for a protein drug delivery. OVA release from the alginate microspheres was controlled by a coating with chitosan.

  • PDF

Evaluation of alginate microspheres prepared by emulsion method for protein delivery system

  • Park, Ji-Hyun;Lee, Chang-Moon;Kim, Gwang-Yun;Rhee, Joon-Haeng;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.574-578
    • /
    • 2005
  • The purpose of the study is to research the proper conditions to prepare the calcium-alginate microspheres using a emulsion method. The calcium-alginate microspheres were prepared at distinct concentrations (alginate; 1%, 1.5%, 2% (w/v), calcium chloride; 2%, 4%, 8%, 10%(w/v)). The shape of the microspheres prepared was spherical. With increasing alginate and calcium chloride concentration the mean size of the microspheres decreased gradually. In release test, the amount of ovalbumin released from the calcium-alginate mcirospheres was decreased by the increasing of alginate and calcium chloride concentration. In this study the best result was obtained at a 2% of alginate concentration and 10% of calcium chloride concentration.

  • PDF

Electrobehavioral and Pathological Characteristics in Cerebral Cortical Dysplasia Induced by External Irradiation in the Rat (방사선조사에 의해 피질이형성증 백서의 전기행동학적, 병리조직학적 특징)

  • Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.861-867
    • /
    • 2000
  • Purpose : Neuronal migration disorder(NMD) is a major underlying pathology of patients with intractable epilepsy. The role of NMD on seizure susceptibility or epileptogenecity, however, has not been documented. Methods : External irradiation of total amount of 250 cGY was performed to the fetal rats on days 16(E16) and 17(E17) of gestation. After delivery, the rats of 230-260g were decapitated for the histopathologic study. Epileptog-enecity of the NMD was studied by observing electroclinical events after intraperitoneal kainic acid(KA) injection in the control rats and NMD rats. Results : Histopathologic findings revealed focal and/or diffuse cortical dysplasia consisting of dyslamination of the cerebral cortex and appearance of the cytomegalic neurons, neuronal heterotopia in the periventricular white matter, dispersion of the pyramidal layer and the dentate gyrus of the hippocampus, and agenesis of the corpus callosum. Abnormal expression of neurofilaments protein(NF-M/H) was characteristically observed in the dysplastic neurons of the neocortex and hippocampus. Early ictal onset and prolonged ictal activity on EEG and clinical seizures were observed from the NMD rats unlike with the control rats. Conclusions : Exteranl irradiation on the fetal rats produced NMD. And the rats with NMD were highly susceptible to kainic acid provoked seizures. This animal model would be useful to study the pathophysiology of clinically relevant NMDs.

  • PDF

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.

Targeting the Osmotic Stress Response for Strain Improvement of an Industrial Producer of Secondary Metabolites

  • Godinez, Octavio;Dyson, Paul;del Sol, Ricardo;Barrios-Gonzalez, Javier;Millan-Pacheco, Cesar;Mejia, Armando
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1787-1795
    • /
    • 2015
  • The transition from primary to secondary metabolism in antibiotic-producing Streptomyces correlates with expression of genes involved in stress responses. Consequently, regulatory pathways that regulate specific stress responses are potential targets to manipulate to increase antibiotic titers. In this study, genes encoding key proteins involved in regulation of the osmotic stress response in Streptomyces avermitilis, the industrial producer of avermectins, are investigated as targets. Disruption of either osaBSa, encoding a response regulator protein, or osaCSa, encoding a multidomain regulator of the alternative sigma factor SigB, led to increased production of both oligomycin, by up to 200%, and avermectin, by up to 37%. The mutations also conditionally affected morphological development; under osmotic stress, the mutants were unable to erect an aerial mycelium. In addition, we demonstrate the delivery of DNA into a streptomycete using biolistics. The data reveal that information on stress regulatory responses can be integrated in rational strain improvement to improve yields of bioactive secondary metabolites.

Recent Advances in Toxoplasma gondii Immunotherapeutics

  • Lim, Sherene Swee-Yin;Othman, Rofina Yasmin
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.581-593
    • /
    • 2014
  • Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.