• Title/Summary/Keyword: Protein conformation

Search Result 173, Processing Time 0.02 seconds

Removal of Chromium (VI) by Escherichia coli Cells Expressing Cytoplasmic or Surface-Displayed ChrB: a Comparative Study

  • Zhou, Xiaofeng;Li, Jianghui;Wang, Weilong;Yang, Fan;Fan, Bingqian;Zhang, Chenlu;Ren, Xiaojun;Liang, Feng;Cheng, Rong;Jiang, Fengying;Zhou, Huaibin;Yang, Juanjuan;Tan, Guoqiang;Lyu, Jianxin;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.996-1004
    • /
    • 2020
  • Various genetically engineered microorganisms have been developed for the removal of heavy metal contaminants. Metal biosorption by whole-cell biosorbents can be enhanced by overproduction of metal-binding proteins/peptides in the cytoplasm or on the cell surface. However, few studies have compared the biosorption capacity of whole cells expressing intracellular or surface-displayed metal-adsorbing proteins. In this study, several constructs were prepared for expressing intracellular and surface-displayed Ochrobactrum tritici 5bvl1 ChrB in Escherichia coli BL21(DE3) cells. E. coli cells expressing surface-displayed ChrB removed more Cr(VI) from aqueous solutions than cells with cytoplasmic ChrB under the same conditions. However, intracellular ChrB was less susceptible to variation in extracellular conditions (pH and ionic strength), and more effectively removed Cr(VI) from industrial wastewater than the surface-displayed ChrB at low pH (<3). An adsorption-desorption experiment demonstrated that compared with intracellular accumulation, cell-surface adsorption is reversible, which allows easy desorption of the adsorbed metal ions and regeneration of the bioadsorbent. In addition, an intrinsic ChrB protein fluorescence assay suggested that pH and salinity may influence the Cr(VI) adsorption capacity of ChrB-expressing E. coli cells by modulating the ChrB protein conformation. Although the characteristics of ChrB may not be universal for all metal-binding proteins, our study provides new insights into different engineering strategies for whole-cell biosorbents for removing heavy metals from industrial effluents.

Relationship between HSP70 Gene Polymorphisms and IVF Embryo Development in Pigs (돼지에서 HSP70 유전자형과 IVF 수정란 배 발달과의 관련성)

  • Jin H. J.;Kim I. C.;Wee M. S.;Yeon S. H.;Kim C. D.;Cho C. Y.;Choi S. H.;Cho S. R.;Son D. S.;Kim Y. K.;Jung J. H.;Choi H. S.;Park C. K.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2005
  • This study was performed to investigate the relationship between Heat shock protein 70 (HSP70) gene polymorphism and in vitro fertilization(IVF) embryo development in the pigs. The single strand conformation polymorphism(SSCP) genotypes from HSP70 K1, K3 and K4 PCR products were detected different patterns. In cleavage rate of oocyte fertilized in vitro, HSP70 K1-AA genotype($73.1\%$) and K1-AB genotype($62.3\%$) showed significantly higher oocyte cleavage rate than HSP70 K1-BB genotype($49.3\%$)(p<0.05). And HSP70 K3-AA genotype ($72.4\%$) and K3-AB($62.2\%$) also showed significantly higher oocyte cleavage rate than HSP70 K3-BB genotype($49.1\%$)(p<0.05). The IVF embryo development of 2-cell stage according to HSP70 genotypes of sperm and pig breeds also showed a significant difference. The number of embryos developed to 2-cell stage in Landrace(28.8) and Duroc(29.8) were significantly higher than in Yorkshire(10.9)(p<0.05). And also HSP70 K4-AB genotype group(29.6) higher than HSP70 K4-AA genotype group(10.6)(p<0.05). However, the number of embryos developed to blastocyst stage did not showed significant differences among breeds as well as HSP70 genotypes. These resrults suggest that in vitro development in porcine early embryos may be affected by HSP70 genotypes and breeds.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF