• Title/Summary/Keyword: Protein cleavage

Search Result 437, Processing Time 0.027 seconds

Expression, Purification and NMR studies of SH3YL1 SH3 domain

  • Shrestha, Pravesh;Yun, Ji-Hye;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • SH3YL1, a novel protein containing one Src homology 3 domain at the carboxyl terminus was first detected in mouse anagen skin cDNA. This protein had a significant homology with YHRO 16c/Ysc 84, the yeast Src homology 3 domain-containing protein. The sequence identity was remarkable at the carboxyl and amino-terminal Src homology 3 domain, suggesting that the novel protein is a mouse homolog of the yeast protein and thus was termed as SH3YL1. SH3YL1 is composed of two domains, a DUF500 at N-termini and a SH3 domain at C-termini. In our study we cloned the SH3 domain in bacterial expression system in Escherichia coli using pET32a vector with TEV protease cleavage site and purified as a monomer using affinity chromatography. The N-terminal poly-Histidine tag was cleaved with TEV protease and target protein was used for backbone studies. Our study showed that SH3 domain primarily consists of $\beta$-sheet which is in consistence with previous result performed on the truncated SH3 domain of SH3YL1.

Protective Ability of Ethanol Extracts of Hypericum scabroides Robson & Poulter and Hypericum triquetrifolium Turra against Protein Oxidation and DNA Damage

  • Kizil, Goksel;Kizil, Murat;Ceken, Bircan
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • The present study was conducted to determine the protective ability of the ethanol extracts of Hypericum scabroides Robson & Poulter (HS) and Hypericum triquetrifolium Turra (HT) against the protein oxidation and DNA damage induced by Fenton system. The ability of HS and HT to prevent oxidative damage to bovine serum albumin (BSA) induced by $Fe^{3+}/H_2O_2$ and ascorbic acid was investigated. The ethanol extracts of HS and HT at different concentrations ($50-1,000{\mu}g/mL$) efficiently prevented protein oxidation induced by hydroxy radical as assayed by protein oxidation markers including protein carbonyl formation (PCO) and polyacrylamide gel electrophoresis. The effect of ethanol extracts of HS and HT on DNA cleavage induced by UV-photholysis of $H_2O_2$ using pBluescript M13+ plasmid DNA were investigated. These extracts significantly inhibited DNA damage induced by reactive oxygen species (ROS). Therefore, HS and HT extracts may be useful in the food industry as effective synthetic antioxidants.

Anti-tumor effects of Realgar on Stomach Cancer Cells (AGS), Glioma Cells (T98G, A172, SNU-489) and Prostate Cancer Cells (LNCaP) (석웅황의 시험관내 위암, 신경교종 및 전립선암 세포에 대한 항암 연구)

  • Kim, Seon-Ryang;Yoon, Seong-Woo;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.409-420
    • /
    • 2007
  • Objectives : The purpose of this study was to identify the anti-tumor effects of realgar on various cancer cells through molecular biologic and cellular biologic methods. Materials & Methods : We used 5 kinds of cancer cell lines:stomach cancer cell (AGS), glioma cells (T98G, A172, SNU-489) and prostate cancer cells (LNCaP). We injected the boiled extract of realgar. $50{\mu}$g/ml and $100{\mu}$g/ml to culture media (ml) for 24 hours. We examined the morphological changes under an inverted microscope and a fluorescence microscope. We measured the suppressive effect on viability of 5 kinds of cancer cells via XTT assay. We examined the effect on the revelation of PARP cleavage, Bcl-2 protein and Bax protein by western blot analysis. Results : The extract of realgar caused markedly morphological changes on AGS, T98G, SNU-489, and LNCaP. All of them showed withdrawn and floating appearance. The suppressive effect on viability of AGS, T98G, A172, SNU-489, and LNCaP showed that each test group had more suppressive effect on viability of AGS, T98G, A172, SNU-489, and LNCaP than the control group, which was statistically significantly (p<0.01). The extract of realgar did not induce PARP cleavage in AGS, T98G, A 172, SNU-489, or LNCaP. In the revelation of protein related to apoptosis, the protein levels of Bcl-2 decreased and the protein levels of Bax increased in AGS, T98G, SNU-489, and LNCaP treated with realgar. The protein levels of Bcl-2 decreased and the protein levels of Bax did not change in A172 treated with realgar. Conclusions : This experiment showed that realgar has anti-tumor effect on stomach cancer cells (AGS), glioma cells (T98G, SNU-489L and prostate cancer cells (LNCaP)

  • PDF

Effects of Addition of Pyruvate, Lactate, Calcium, and Protein Sources on the Development of Bovine IVF Embryos

  • Lee, S.H.;Lee, J.H.;Chung, G.M.;Im, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.655-660
    • /
    • 1998
  • To produce blastocysts more efficiently, it is required to identity accurately the factors involving embryonic cleavage in the chemically defined medium. Effects of pyruvate, lactate, calcium and protein sources on early cleavage of bovine follicular oocytes were investigated. The percentage of IVF embryos cleaved to ${\geq}$ 2-cell or ${\geq}$ 8-cell was higher in pyruvate (+) and lactate (+) (48 or 14%) than in pyruvate (-) and lactate (-) (22% or 4%), than in pyruvate (+) and lactate (-) (28% or 5%) and than in pyruvate (-) and lactate (+) (40% or 10%). Lactate was more effective than pyruvate during early cleavage of bovine embryos in the chemically defined medium. The percentage of IVF embryo cleaved to ${\geq}$ 2-cell and ${\geq}$ 8-cell in calcium (-) (19 and 6%) was significantly (p < 0.05) lower than in calcium (+) (78 and 45%). The percentage of embryos developed to ${\geq}$ 2-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (57, 57 and 57%). Also the percentage of A grade embryos developed to ${\geq}$ 2-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (40, 35 and 28%). The percentage of embryos developed to ${\geq}$ 8-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (33, 23, and 22%). However, the percentage of A grade embryos developed to ${\geq}$ 8-cell in BSA (24%) was significantly (p < 0.05) higher than in 1 and 20% FBS (13 and 8%). The percentage of embryos developed to ${\geq}$ morula showed no significant (p < 0.05) difference among BSA, 1, 10 and 20% FBS (76, 76, 80 and 68%). The percentage of A grade embryos developed to ${\geq}$ morula in 10% FBS (59%) was significantly (p < 0.05) higher than 20% FBS (43%). The percentage of embryos developed to blastocyst showed no significant (p < 0.05) difference among BSA, 1, 10 and 20% FBS (34, 41, 43 and 32%). However, the percentage of A grade embryos developed to ${\geq}$ blastocysts in 10% FBS (25%) was significantly (p < 0.05) higher than in 20% FBS (8%).

Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking

  • Jung, Sung Hun;Kim, Chang-Kyu;Lee, Gunhee;Yoon, Jonghwan;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.142-146
    • /
    • 2017
  • More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.

Production and Amyloid fibril formation of tandem repeats of recombinant Yeast Prion like protein fragment

  • Kim, Yong-Ae;Park, Jae-Joon;Hwang, Jung-Hyun;Park, Tae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Amyloid fibrils have long been known to be the well known ${\alpha}$-helix to ${\beta}$-sheet transition characterizing the conversion of cellular to scrapie forms of the prion protein. A very short sequence of Yeast prion-like protein, GNNQQNY (SupN), is responsible for aggregation that induces diseases. KSI-fused tandem repeats of SupN vector are constructed and used to express SupN peptide in Escherichia coli (E.Coli). A method for a production, purification, and cleavage of tandem repeats of recombinant isotopically enriched SupN in E. coli is described. This method yields as much as 20 mg/L of isotope-enriched fusion proteins in minimal media. Synthetic SupN peptides and $^{13}C$ Gly labeled SupN peptides are studied by Congo Red staining, Birefringence and transmission electron microscopy to characterize amyloid fibril formation. To get a better understanding of aggregation-structure relationship of 7 residues of Yeast prion-like protein, the change of a conformational structure will be studied by $^{13}C$ solid-state nmr spectroscopy as powder of both amorphous and fibrillar forms.

Improvement of the Setting Properties of Natural Protein Fibers (천연 단백질섬유의 세트성 증진)

  • Jang, Byung-Ho;Nam, Sung-Woo
    • Textile Coloration and Finishing
    • /
    • v.2 no.2
    • /
    • pp.14-19
    • /
    • 1990
  • The setting behavior of disulfide-enriched wool and disulfide-crosslinked silk obtained by treatment with a disulfide-containing crosslinking agent, bis $(\beta-isocyanatoethyl)$ dissulfide was compared with that of untreated wool and silk under the absence and the presence of a reducing agent. Rearrangment of secondary bonds facilitated by cleavage of crosslinks as well as rearrangement of crosslinks itself seems to play an important role in the set stability.

  • PDF

Action of Protein Kinase A and C Activators on Germinal Vesicle Breakdown and One-Cell Embryos in the Mouse (생쥐 GV난자와 1-세포기 배아의 핵막붕괴에 미치는 Protein Kinase A와 C의 작용)

  • 이대기;김경진;조완규
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1989
  • Expedments were perfonned to examine the role of cAMP-dependent protein kinase (PK-A) and diacylglycerol-dependent protein kinase (PK-C) during the meiodc resumption and the first mitotic cell cycle of mouse embryogenesis. Mejoric GV oocytes and one-cell embryos derived from in vitro fertilization were cultured in vitro, and morphological changes in response to activators of PK-A and PK-C were examined. Treatments with a membrane-permeable cAMP analog, dbcAMP (0.1 mg/mi), phosphodiesterase inhibitor, IBMX (0.1 mM), biologically active phorbol ester, WA (10 nglmi), or a synthetic diacylglycerol, sn-diC8 inhibited resumption of melosis. Combination of PK-A and PK-C activator brought about furiher inhibition. On the contrary, dbcAMP (0.1 mg/mi), IBMX (0.2 mM), WA (10 nglml), and sn-diC8 (0.5 mM) did not inhibit pronucleus membrane breakdown (PNBD) when added S or G2 phase of cell cycle. However, activators of PK-C inhibited cleavage of one-cefl embryos. This result indicates that the action mechanism of PK-A and PK-C on dissolution of nuclear membrane in primary meiotic arrest oocytes may be different from that of mitotic one-cell embryos.

  • PDF

A New Signal Sequence for Recombinant Protein Secretion in Pichia pastoris

  • Govindappa, Nagaraj;Hanumanthappa, Manjunatha;Venkatarangaiah, Krishna;Periyasamy, Sankar;Sreenivas, Suma;Soni, Rajeev;Sastry, Kedarnath
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • Pichia pastoris is one of the most widely used expression systems for the secretory expression of recombinant proteins. The secretory expression in P. pastoris usually makes use of the prepro $MAT{\alpha}$ sequence from Saccharomyces cerevisiae, which has a dibasic amino acid cleavage site at the end of the signal sequence. This is efficiently processed by Kex2 protease, resulting in the secretion of high levels of proteins to the medium. However, the proteins that are having the internal accessible dibasic amino acids such as KR and RR in the coding region cannot be expressed using this signal sequence, as the protein will be fragmented. We have identified a new signal sequence of 18 amino acids from a P. pastoris protein that can secrete proteins to the medium efficiently. The PMT1-gene-inactivated P. pastoris strain secretes a ~30 kDa protein into the extracellular medium. We have identified this protein by determining its N-terminal amino acid sequence. The protein secreted has four DDDK concatameric internal repeats. This protein was not secreted in the wild-type P. pastoris under normal culture conditions. We show that the 18-amino-acid signal peptide at the N-terminal of this protein is useful for secretion of heterologous proteins in Pichia.

Effects of Celecoxib on Cycle Kinetics of Gastric Cancer Cells and Protein Expression of Cytochrome C and Caspase-9

  • Wang, Yu-Jie;Niu, Xiao-Ping;Yang, Li;Han, Zhen;Ma, Ying-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2343-2347
    • /
    • 2013
  • Objective: This investigation aimed to determine effects of celecoxib on the cell cycle kinetics of the gastric cancer cell line MGC803 and the mechanisms involved by assessing expression of cytochrome C and caspase-9 at the protein level. Methods: Cell proliferation of MGC803 was determined by MTT assay after treatment with celecoxib. Apoptosis was assessed using fluorescence staining and cell cycle kinetics by flow cytometry. Western blotting was used to detect the expression of caspase-9 protein and of cytochrome C protein in cell cytosol and mitochondria. Results: Celecoxib was able to restrain proliferation and induce apoptosis in a dose- and time-dependent manner, inducing G0/G1 cell cycle arrest, release of cytochrome C into the cytosol, and cleavage of pro-caspase-9 into its active form. Conclusion: Celecoxib can induce apoptosis in MGC803 cells through a mechanism involving cell cycle arrest, mitochondrial cytochrome C release and caspase activation.