• Title/Summary/Keyword: Protein array

Search Result 195, Processing Time 0.027 seconds

The mRNA Expression of Radio-Sensitive Genes Exposed to Various Dosage of Ionizing Radiation in U-937 Cell (U-937 세포에서 이온화 방사선의 조사선량에 따른 감수성 유전자들의 발현 변화)

  • 김종수;임희영;오연경;김인규;강경선;윤병수
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • We used cDNA microarray to assess gene expression profiles in hematopoetic cell line, U-937, exposed to low doses of ionizing irradiation. The 1,000 DNA elements on this array were PCR-amplified cDNAs selected from named human cancer related genes. According to the strength of irradiation, the levels of some gene expression were increased or decreased as dose-dependent manner. The gene expressions of Tubulin alpha, protein kinase, interferon-alpha, -beta, -omega receptor and ras homolog gene family H were significantly increased. Especially, Tubulin gene was shown 2.5 fold up-regulated manner under stress of 500 rad irradiation than 200 rad. On the other hand, fibroblast growth factor 12 and four and a half LIM domains, etc. were significantly down-regu-lated. Also, tumor protein 53(TP53) related genes that p53 inducible protein, tumor protein 53-binding protein looks of little significance as radiation sensitive manner. The radio-sensitivity of tubulin gene etc. that we proposed could be useful to rapid and correct survey for the bio-damage by exposure to low dose irradiation.

Apoptosis-Induced Gene Profiles of a Myeloma Cell P3-X63-Ag8.653

  • Bahng, Hye-Seung;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • Background: Apoptosis is a physiologic phenomenon involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. The mouse myeloma cell P3-X63-Ag8.653 (v653) is an HGPRT deficient $(HGPRT^-)$ mutant strain. High dependency on de novo transcription and translation of aminopterin induced apoptosis of this cell seems to be an ideal experimental system for searching apoptosis-induced genes. Methods & Results: For searching apoptosis-related genes we carried out GE-array (dot blot), Affymetrix GeneChip analysis, Northern analysis and differential display-PCR techniques. The chip data were analyzed with three different programs. 66 genes were selected through Affymetrix GeneChip analyses. All genes selected were classified into 8 groups according to their known functions. They were Genes of 1) Cell growth/maintenance/death/enzyme, 2) Cell cycle, 3) Chaperone, 4) Cancer/disease-related genes, 5) Mitochondria, 6) Membrane protein/signal transduction, 7) Nuclear protein/nucleic acid binding/transcription binding and 8) Translation factor. Among these groups number of genes were the largest in the genes of cell growth/maintenance/death/enzyme. Expression signals of most of all groups were peaked at 3 hour of apoptosis except genes of Nuclear protein/nucleic acid binding/transcription factor which showed maximum signal at 1 hour. Conclusion: This study showed induction of wide range of proapoptotic factors which accelerate cell death at various stage of cell death. In addition apoptosis studied in this research can be classified as a type 2 which involves cytochrome c and caspase 9 especially in early stages of death. But It also has progressed to type 1 in late stage of the death process.

Inhibitory Effect of Gallic acid on Production of Chemokine and Growth Factor in Mouse Macrophage Stimulated by Lipopolysaccharide (Gallic acid가 Lipopolysaccharide로 활성화된 마우스 대식세포의 케모카인과 성장인자 생성에 미치는 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.586-591
    • /
    • 2010
  • Chemokine and Growth Factor are major mediumtors of immuno-inflammatory pathway. The purpose of this study is to investigate whether productions of Chemokine and Growth Factor in lipopolysaccharide (LPS)-induced mouse macrophage RAW 264.7 cells are modulated by Gallic acid (GA), which is easily founded in tannin-containing natural materials such as red wine, green tea, grape juice, and Corni Fructus. Productions of Chemokine and Growth Factor were analyzed by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$ (multi-analyte profiling beads) technology. At first, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, the antibody-conjugated beads were added and incubated for 30 minutes. After incubation, detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE) was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Based on fluorescence intensity, concentrations of Chemokine and Growth Factor were determined. The results of the experiment are as follows. GA significantly inhibited the production of interferon-inducible protein (IP)-10, keratinocyte-derived chemokine(KC), and vascular endothelial growth factor (VEGF) in LPS-induced RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05). GA significantly inhibited the production of monocyte chemoattractant protein-1(MCP-1) and macrophage-colony stimulating factor(M-CSF) in LPS-induced RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05). GA diminished the production of granulocyte macrophage-colony stimulating factor (GM-CSF) in LPS-induced RAW 264.7 cells. But GA did not show the inhibitory effect on the production of leukemia inhibitory factor (LIP) and macrophage inflammatory protein (MIP)-2 in LPS-induced RAW 264.7 cells. These results suggest that GA has the immuno-modulating activity related with its inhibitory effects on the production of IP-10, KC, MCP-1, VEGF, and M-CSF in LPS-induced macrophages.

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

Development of a New Software Package for Processing and Analyzing DNA Microarray Images

  • Choi, Jin-Ho;Choi, Hee-Jun
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.4
    • /
    • pp.350-367
    • /
    • 2010
  • Microarray technology is an interdisciplinary technique that promises a revolutionary progress toward better health and improved quality of life. The paper focuses on the development of an efficient software package, equipped with already well-known methods; also some new methods are proposed that will allow the processing and analysis of thousands of genes on microarray images. The microarray analysis software package (called SmartArray), newly proposed in this paper verifies, through microarray analysis, dramatic changes in the mRNA, protein, and activity level in the rat retina during light deprivation, which have been demonstrated in previous biological experiments. The analysis results demonstrate that SmartArray can successfully find many changes in gene expression levels in each subarray and classify them according to their significance.

Development of a Continuous High-Speed Single-Kernel Brown Rice Sorting Machine Based on Rice Protein Content

  • Natsuga, Motoyasu;Nakamura, Akitoshi;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1616-1616
    • /
    • 2001
  • To select kernels for breeding that have required constituent content from either naturally distributed samples or artificially mutated ones, it is necessary to process batch samples in a short time. The constituent content of single-kernel grains such as wheat and rice has been determined using conventional bench type NIR instruments; however, it takes a lot of time and effort. Shizuoka Seiki (Fukuroi-city, Japan) and NFRI (National Food Research Institute) of MAFF (Ministry of Agriculture, forestry and Fisheries of Japan) have jointly developed a continuous high-speed single-kernel brown rice sorting machine based on rice protein content. It consists of several sections such as a feeding mechanism, measuring unit, sorting mechanism and controlling PC. The feeding mechanism picks up single-kernel brown rice from the hopper (maximum of 5kg storage capacity) and sends it to the measuring unit. A spectrum of the brown rice is obtained in the measuring unit, which consists of a near-infrared array sensor. The brown rice is then sorted in the sorting mechanism based on its protein content estimated by the controlling PC. In the present study, measuring speed was approximately 500ms for the full spectrum range and overall sorting speed was approximately 2.8s for one kernel. Accuracy of estimation was approximately SEP=0.5% of dry matter protein content for nonglutinous rice.

  • PDF

A Comprehensive Review of Recent Advances in the Enrichment and Mass Spectrometric Analysis of Glycoproteins and Glycopeptides in Complex Biological Matrices

  • Mohamed A. Gab-Allah;Jeongkwon Kim
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 2024
  • Protein glycosylation, a highly significant and ubiquitous post-translational modification (PTM) in eukaryotic cells, has attracted considerable research interest due to its pivotal role in a wide array of essential biological processes. Conducting a comprehensive analysis of glycoproteins is imperative for understanding glycoprotein bio-functions and identifying glycosylated biomarkers. However, the complexity and heterogeneity of glycan structures, coupled with the low abundance and poor ionization efficiencies of glycopeptides have all contributed to making the analysis and subsequent identification of glycans and glycopeptides much more challenging than any other biopolymers. Nevertheless, the significant advancements in enrichment techniques, chromatographic separation, and mass spectrometric methodologies represent promising avenues for mitigating these challenges. Numerous substrates and multifunctional materials are being designed for glycopeptide enrichment, proving valuable in glycomics and glycoproteomics. Mass spectrometry (MS) is pivotal for probing protein glycosylation, offering sensitivity and structural insight into glycopeptides and glycans. Additionally, enhanced MS-based glycopeptide characterization employs various separation techniques like liquid chromatography, capillary electrophoresis, and ion mobility. In this review, we highlight recent advances in enrichment methods and MS-based separation techniques for analyzing different types of protein glycosylation. This review also discusses various approaches employed for glycan release that facilitate the investigation of the glycosylation sites of the identified glycoproteins. Furthermore, numerous bioinformatics tools aiding in accurately characterizing glycan and glycopeptides are covered.

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Immunohistochemical Array Analysis of Cemento-Ossifying Fibroma Exhibiting aneurysmal Cystic Changes (백악-골화섬유종에서 보이는 동맥류성 낭종변화의 면역조직화학염색 배열분석)

  • Lee, Sang Shin;Kim, Yeon Sook;Lee, Suk Keun
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.189-198
    • /
    • 2018
  • A 31 years old female had been suffered from a bony swelling in right premolar region of the mandible for 12 years, recently grown rapidly. A fistula tract developed on the right anterior mandibular border, but the lesion was relatively asymptomatic. In the radiological examination, the tumor mass was irregularly mixed with radiolucent and radiopaque areas, forming multiple cystic spaces. Under the diagnosis of calcifying odontogenic cyst, the mandibular mass was resected and examined pathologically. After decalcification, the dissected tumor mass showed multiple small cystic spaces and calcifying fibrous tissue, mimicking calcifying odontogenic cyst or ameloblastoma. Histological observation showed many calcifying cementoid materials and ossifying trabeculae. The cystic spaces were turned out to be dilated vascular channels lined by endothelial cells, containing plasma fluid. However, the main lesion was diagnosed as cemento-ossifying fibroma (COF), and the atypical vascular channels were greatly dilated and gradually expanded the whole tumor mass. The present COF was examined through immunohistochemical (IHC) array, and investigated for tumor cell characteristics, exhibiting abnormal ossification and aneurysmal cystic changes. IHC array disclosed that the tumor cells grew progressively in the lack of apoptosis, and that they showed lower expression of RUNX2 than BMP-2, RANKL, and OPG, and increases of protein expression in $HIF-1{\alpha}$, VEGF-A, and CMG2. These data suggested that the reduced expression of RUNX2, osteoblast differentiation factor, be relevant to abnormal ossification of COF, and that the consistent expressions of angiogenesis factors be relevant to de novo angiogenesis in COF, subsequently resulted in aneurysmal cystic changes.

DNA Array Analysis of Changes in Gene Expression Profile in DHEA-induced PCO

  • Yu, Jeong-Min;Yoo, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young, Kim, Jee-Yun;Kang, Sung-Goo
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.112-112
    • /
    • 2002
  • Under normal conditions, women produce a single dominant follicle that participates in a single ovuation each menstrual cycle. But Polycystic ovary syndrome(PCOS) conditions, folliculogenesis does not proceed normally. This condition leads to the accumlation of large numbers of small graffian follicles in which the theca interstitial cells (TIC) produce abnormally large amounts of androgen. PCOS is probably the most common endocrine disorder, affecting women of reprodutive age with 5-10% prevalence estimate. Chronic anovulation, hyperandrogenism, hirsutism, obesity, infertility and polycystic ovaries are clinical hallmarks of women with PCOS. Its etiology remains unknown. To investigate the gene expression pattern of ovary in PCO-induced rat, we used cDNA expression analysis. Total RNA was extracted from the ovary of PCO-induced rat and reverse-transcribed in the presence of[$\alpha$$^{32}$P]-dATP Which were hybridized to Atlas$^{TM}$ Rat Toxicology 1.2 array (Clontech) representing approximately 1176 rat genes. We compared gene expression between ovary of pco-induced immature female rats and control. Differential gene expression profiles were revealed (LIFR-alpha, ADRA1A, Heat shock 90-kDa protein A, PDGFRA). Reverse transcription-polymerase chain reaction(RT-PCR) was used to validate the relative expression pattern obtained by the cDNA array. The precise relationship between the altered expression of genes and PCO is a matter of further investigation. This study was supported by Korea Science and Engineering Foundation(KOSEF)

  • PDF