• 제목/요약/키워드: Protein and energy metabolism

검색결과 332건 처리시간 0.025초

Serratia marcescens nuclease의 escherichia coli에서의 분비 (Secretion of the cloned serratia marcescens nuclease in escherichia coli)

  • 신용철;이상열;김기석
    • 미생물학회지
    • /
    • 제28권4호
    • /
    • pp.297-303
    • /
    • 1990
  • Secretion of Serratia marcescens nuclease by E. coli harboring pNUC4 was investigated. 29.2, 54.2 and 16.6% of total nuclease were observed in culture medium, periplasm, and cytoplasm of E. coli, respectively. To investigate the secretion mechanism of Serratia nuclease by E. coli, secretion kinetics of nuclease was examined in the presences of sodium azide, and energy metabolism inhibitor; procaine, an exoprotein processing inhibitor; and chloramphenicol, a protein synthesis inhibitor. In the presence of sodium azide, periplasmic unclease was gradually decreased and the extracellular nyclease was linearly increased according to the incubation time. Similar results were obtained in presences of procaine and chloramphenicol. From these results, we concluded that two transport processes are involved in nuclease secretion: secretion of nuclease through the inner membrane is occurred by an energy-dependent process and probably requiring precusor processing: secretion of nuclease through outer membrane does not require energy, de novo protein synthesis, and precursor processing.

  • PDF

고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구 (Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice)

  • 전우진;김지영;오익훈;이도섭;손서연;서윤지;연승우;강재훈
    • 한국식품과학회지
    • /
    • 제49권2호
    • /
    • pp.192-202
    • /
    • 2017
  • 황정 주정 추출물 ID1216의 고지방 식이 유도 비만 마우스에서의 체중 증가 억제 효과에 대한 분자생물학적 기전을 확인하고자 단백질과 mRNA 수준에서 지질 및 에너지 대사 관련 유전자들의 발현 변화를 관찰하였다. 본 연구에서 확인된 지표들 간의 상호 작용 및 ID1216의 조절 여부에 관해 Fig. 10에 나타내었다. 실험 결과 ID1216은 고지방 식이 유도 비만 마우스에서 체중 증가 억제를 나타내었으며, 비만 대사 관련 pathway의 상위 유전자로 사료되는 SIRT1과 AMPK의 발현을 조절하는 것으로 나타났다. 활성화된 SIRT1과 AMPK는 $PGC1{\alpha}$의 활성화에 관여하고, 이를 통해 열 발산 대사와 관련된 UCP 단백질과 핵 수용체 단백질인 $PPAR{\alpha}$의 발현이 백색지방, 갈색지방, 간 및 근육에서 증가되는 것이 확인되었다. 각 조직 별로 RT-PCR을 진행한 결과에서는 $PPAR{\alpha}$의 하위 유전자인 aP2, ACO, Acadl, Acadm, CPT1a, CPT1b의 mRNA 발현 수준을 향상시켜 주어 ID1216이 지방산 산화 대사인 ${\beta}$-oxidation의 활성화에 기여할 가능성을 보여주었다. 이와는 별개로 ID1216은 중성지질을 분해하는 것으로 알려진 ATGL의 mRNA 발현 또한 증가시키는 것으로 확인되었다. 본 연구를 통해 ID1216이 조직에 따라 지질 및 에너지 대사와 관련된 인자의 발현에 영향을 주는 체중 조절에 효과적인 소재임을 알 수 있었다. 또한 비만 치료제와의 기전적 차별성과 생약 특유의 섭취 안전성을 특징으로 하는 체중 또는 체지방 조절 기능성 소재로의 활용 가능성도 충분히 가지고 있음을 확인할 수 있었다.

Feeding Value of Sugarcane Stalk for Cattle

  • Kawashima, T.;Sumamal, W.;Pholsen, P.;Chaithiang, R.;Boonpakdee, W.;Kurihara, M.;Shibata, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권1호
    • /
    • pp.55-60
    • /
    • 2002
  • A metabolism trial with four castrated male Brahman cattle, average body weight 320 kg, was conducted in order to determine the nutritive value of chopped sugarcane stalk (CSS) for the establishment of feeding strategy in the dry season in Northeast Thailand. Animals were subjected to the following four dietary treatments: Treatment 1; 100% of CSS, Treatment 2; 70% of CSS and 30% of commercial complete feed (TMR), Treatment 3; 40% of CSS and 60% of TMR, and Treatment 4; 100% of TMR. The average CP, ether extracts, nitrogen free extracts, crude fiber and ash contents of CSS were 2.0, 0.9, 79.0, 16.1 and 2.2%, respectively. Although the amount of feed given was approximately at maintenance level, animals in treatments 1 and 2 refused a part of feed. The metabolism trial revealed that total digestible nutrient and metabolizable energy contents of CSS were 61.5% and 9.04 MJ/kgDM, respectively, when it was properly supplemented with protein sources. Nutritive value of CSS was lowered when animals were given CSS solely. This was due to the large loss of energy into urine and methane. Voluntary intake of CSS in cattle was not enough to satisfy energy requirement for maintenance. The CSS can be used as a roughage for feeding cattle in the dry season with proper supplementation of protein and energy.

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.

Vitamin B6 결핍이 Streptozotocin 유발 당뇨 흰쥐의 에너지 대사물 농도에 미치는 영향 (The Effect of Vitamin B6 Deficiency on Energy Metabolite in Streptozotocin-induced Diabetic Rats)

  • 주윤옥
    • Journal of Nutrition and Health
    • /
    • 제27권3호
    • /
    • pp.228-235
    • /
    • 1994
  • The purpose of this study was to investigate the effect of vitamin B6 deficiency on the concentration of energy metabolite in streptozotocin-induced diabetic rats. Thirty rats were fed a vitamin B6 deficient diet(-B6) or a control diet(+B6) for 5 weeks and then subdivided into 3 groups respectively ; base group, one day diabetic group and three day diabetic group. Diabetes of rats were induced by streptozotocin injection into the tail vein. Glucose, glycogen, protein, alanine, triglyceride and free fatty acids were compared in plasma, liver skeletal muscle of rats. Also, the total urinary nitrogen and glucose excretion were compared. Compared with +B6 rats, the increase of plasma glucose in -B6 rats due to the diabetes was smaller. After diabetes was induced, the level of plasma alamine was not changed in -B6 rats while increased significantly(p<0.05) in +B6 rats. The increase of urinary nitrogen excretion was smaller and the increase of muscle protein was larger in -B6 rats at the first day diabetes was induced. The levels of plasma free fatty acid and liver triglyceride were significantly (p<0.05) higher in -B6 rats after diabetes was induced. These results suggest that vitamin B6 deficiency may impair the adaptation of animals to the energy metabolism related due to a decrease of the body protein catabolism of fatty acid oxidation in diabetes and aggravate fatty liver which is one of the chronic complications of diabetes.

  • PDF

Adenosine monophosphate-activated protein kinase in diabetic nephropathy

  • Kim, Yaeni;Park, Cheol Whee
    • Kidney Research and Clinical Practice
    • /
    • 제35권2호
    • /
    • pp.69-77
    • /
    • 2016
  • Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 50 adenosine monophosphate-activated protein kinase (AMPK), an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.

Proteomic Analysis and Extensive Protein Identification from Dry, Germinating Arabidopsis Seeds and Young Seedlings

  • Fu, Qiang;Wang, Bai-Chen;Jin, Xiang;Li, Hong-Bing;Han, Pei;Wei, Kai-Hua;Zhang, Xue-Min;Zhu, Yu-Xian
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.650-660
    • /
    • 2005
  • Proteins accumulated in dry, stratified Arabidopsis seeds or young seedlings, totaled 1100 to 1300 depending on the time of sampling, were analyzed by using immobilized pH gradient 2-DE gel electrophoresis. The molecular identities of 437 polypeptides, encoded by 355 independent genes, were determined by MALDI-TOF or TOF-TOF mass spectrometry. In the sum, 293 were present at all stages and 95 were accumulated during the time of radicle protrusion while another 18 appeared in later stages. Further analysis showed that 226 of the identified polypeptides could be located in different metabolic pathways. Proteins involved in carbohydrate, energy and amino acid metabolism constituted to about 1/4, and those involved in metabolism of vitamins and cofactors constituted for about 3% of the total signal intensity in gels prepared from 72 h seedlings. Enzymes related to genetic information processing increased very quickly during early imbibition and reached highest level around 30 h of germination.

Analysis of Aluminum Stress-induced Differentially Expressed Proteins in Alfalfa Roots Using Proteomic Approach

  • Kim, Dong-Hyun;Lee, Joon-Woo;Min, Chang-Woo;Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.137-145
    • /
    • 2022
  • Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

산양삼 혼입 숙성 감식초 섭취에 의한 흰쥐의 에너지 대사 변화 연구 (Change of Ripened Persimmon Vinegar with Mountain Ginseng Ingestion on Energy Metabolism in Rats)

  • 전병덕;김판기;류승필
    • 한국산림과학회지
    • /
    • 제101권3호
    • /
    • pp.517-525
    • /
    • 2012
  • 본 연구에서는 4년근 산양삼을 4년 숙성된 감식초에 혼입 숙성시킨 후, 5배 희석하여 쥐에게 경구투여하였다. 이후 당질대사 및 지질대사에 영향을 미치는 단백질 발현율을 분석하여 융합소재의 에너지대사율 증대에 의한 비만억제효과에 대하여 검토하였다. 집단은 대조군(CON), 감식초군(PV), 산양삼+감식초 융합소재군(MPV)으로 각각 구분하였다. 체중의 증가율은 PV, MPV가 낮게 나타났다. 글루코스 농도는 PV와 MPV가 낮았으며, 반대로 GLUT-2는 유의하게 높았다. 유리지방산 농도와 CPT-1은 PV, MPV가 높았으며, MPV가 PV에 비하여 높았다. Cytochrome C oxidase는 MPV가 CON에 비하여 높게 나타났다. AMPK, $PPAR-{\gamma}$ 그리고 $PGC1-{\alpha}$는 모두 PV, MPV가 높았으며, MPV가 PV에 비하여 높았다. 이상과 같은 결과는 융합소재의 체열생산반응을 증명하며, 이를 통한 에너지 대사 상승은 비만억제에 효과적으로 사용될 수 있으리라 판단되며, 다양한 후속연구를 통한 검증이 필요할 것이라 사료된다.