• Title/Summary/Keyword: Protein Molecule

Search Result 614, Processing Time 0.026 seconds

Increased Sensitivity of ras-transformed Cells to Capsaicin-induced Apoptosis

  • Kang, Hye-Jung;Yunjo Soh;Kim, Mi-Sung;Lee, Eun-Jung;Surh, Young-Joon;Kim, Seung-Hee;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • During the last decade, enormous progress has been made on the biological significance of apoptosis. Since ras is among the most central molecule in signaling, we asked if ras regulates apoptotic pathway. We have previously shown that H-ras, but not N-ras, induces an invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In this study, we wished to seek a chemopreventive agent that effectively induces apoptosis in H-ras-activated cells. Here we show that capsaicin, the major pungent phytochemical in red pepper, induces caspase 3-involved apoptosis selectively in H-ras activated MCF10A cells while the parental MCF10A cells are not effected. In order to study the molecular mechanisms for the increased sensitivity of H-ras MCF10A cells to capsaicin-induced apoptosis, activation of ras downstream signaling molecules, mitogen-activated protein kinases (MAPKinases), upon capsaicin treatment was investigated. Phosphorylated forms of JNK1 and p38 MAPKinase were prominently increased whereas activated ERK-1/2 was decreased by capsaicin in ras-activated cells. The parental cells did not respond to capsaicin, suggesting that capsaicin selectively induces apoptosis through modulating activities of ras downstream signaling molecules in H-ras-activated cells. Studies using chemical inhibitors (CPT-cAMP, SB203580 and PD98059) and dominant negative constructs of JNKl, p38 and MEK show that activation of JNK1 and p38 MAPKinase, but not ERK-1/2, is critical for ras-mediated apoptosis by capsaicin.

  • PDF

Synthesis and Structural Studies of an Organic Complex and its Association with BSA

  • Meng, Fa-Yan;Yu, Sheng-Rong;Liang, Li-Xi;Zhong, Xue-Ping;Wang, Li;Zhu, Jin-Mei;Lin, Cui-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2253-2259
    • /
    • 2011
  • The self-assembly of one novel organic complex based on chlorogenic acid (HCA) and 2,2'-bipyridine (2,2'-bipy) has been synthesized and characterized. The complex achieved by hydrogen-bonding interactions, adopted a 1:1 stoichiometry in a solid state. The proton transfer occurred from the carboxyl oxygen to the aromatic nitrogen atom to form salts CA${\cdot}$(2,2'-Hbipy), the 2,2'-Hbipy molecule individually occupies the pseudo-tetragonum that is formed with CA. In this paper, the interactions of CA${\cdot}$(2,2'-Hbipy) with bovine serum albumin (BSA) were studied by fluorescence spectrometry. For CA${\cdot}$(2,2'-Hbipy), HCA and 2,2'-bipy, the average quenching constants for BSA were $2.4384{\times}10^4$, $4.653{\times}10^3$, and $3.059{\times}10^3\;L{\cdot}mol^{-1}$, respectively. The mechanism for protein fluorescence quenching is apparently governed by a static quenching process. The Stern-Volmer quenching constants and corresponding thermodynamic parameters ${\Delta}$H, ${\Delta}$G and ${\Delta}$S were calculated. The binding constants and the number of binding sites were also investigated. The conformational changes of BSA were observed from synchronous fluorescence spectra.

Protein Expression Analysis in Hematopoietic Stem Cells during Osteopontin-Induced Differentiation of Natural Killer Cells

  • Kim, Mi-Sun;Bae, Kil-Soo;Kim, Hye-Jin;Yoon, Suk-Ran;Oh, Doo-Byung;Hwang, Kwang-Woo;Jun, Woo-Jin;Shim, Sang-In;Kim, Kwang-Dong;Jung, Yong-Woo;Park, So-Young;Kwon, Ki-Sun;Choi, In-Pyo;Chung, Jin-Woong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.206-210
    • /
    • 2011
  • Natural Killer (NK) cells are the lymphocytes that are derived from hematopoietic stem cells, developed in the bone marrow from hematopoietic stem cells (HSC) by sequential acquisition of functional surface receptors, and express the repertoire of inhibitory and activating receptors. Recently, Osteopontin (OPN) has been identified as a critical factor for differentiation of natural killer cells. However, the detailed mechanism of OPN-induced NK differentiation has been still to be elucidated. Here, we determined the signaling pathway and possible receptor for OPN in NK differentiation. OPN induced expression of Bcl-2 and activation of Erk kinase. Inhibition of Erk pathway decreased the effect of OPN on NK differentiation. In addition, the expression of integrin ${\alpha}9$ was significantly increased by OPN during NK differentiation, suggesting the possible role of a major signaling molecule for OPN- induced NK differentiation.

HD047703, a New Promising Anti-Diabetic Drug Candidate: In Vivo Preclinical Studies

  • Kim, SoRa;Kim, Dae Hoon;Kim, Young-Seok;Ha, Tae-Young;Yang, Jin;Park, Soo Hyun;Jeong, Kwang Won;Rhee, Jae-Keol
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.400-405
    • /
    • 2014
  • G-protein coupled receptor 119 (GPR119) has emerged as a novel target for the treatment of type 2 diabetes mellitus. GPR119 is involved in glucose-stimulated insulin secretion (GSIS) from the pancreatic b-cells and intestinal cells. In this study, we identified a novel small-molecule GPR119 agonist, HD047703, which raises intracellular cAMP concentrations in pancreatic ${\beta}$-cells and can be expected to potentiate glucose-stimulated insulin secretion from human GPR119 receptor stably expressing cells (CHO cells). We evaluated the acute efficacy of HD047703 by the oral glucose tolerance test (OGTT) in normal C57BL/6J mice. Then, chronic administrations of HD047703 were performed to determine its efficacy in various diabetic rodent models. Single administration of HD047703 caused improved glycemic control during OGTT in a dose-dependent manner in normal mice, and the plasma GLP-1 level was also increased. With respect to chronic efficacy, we observed a decline in blood glucose levels in db/db, ob/ob and DIO mice. These results suggest that HD047703 may be a potentially promising anti-diabetic agent.

Circulating Aneuploid Cells Detected in the Blood of Patients with Infectious Lung Diseases

  • Kim, Hongsun;Cho, Jong Ho;Sonn, Chung-Hee;Kim, Jae-Won;Choi, Yul;Lee, Jinseon;Kim, Jhingook
    • Journal of Chest Surgery
    • /
    • v.50 no.2
    • /
    • pp.126-129
    • /
    • 2017
  • The identification of circulating tumor cells (CTCs) is clinically important for diagnosing cancer. We have previously developed a size-based filtration platform followed by epithelial cell adhesion molecule immunofluorescence staining for detecting CTCs. To characterize CTCs independently of cell surface protein expression, we incorporated a chromosomal fluorescence in situ hybridization (FISH) assay to detect abnormal copy numbers of chromosomes in cells collected from peripheral blood samples by the size-based filtration platform. Aneuploid cells were detected in the peripheral blood of patients with lung cancer. Unexpectedly, aneuploid cells were also detected in the control group, which consisted of peripheral blood samples from patients with benign lung diseases, such as empyema necessitatis and non-tuberculous mycobacterial lung disease. These findings suggest that chromosomal abnormalities are observed not only in tumor cells, but also in benign infectious diseases. Thus, our findings present new considerations and bring into light the possibility of false positives when using FISH for cancer diagnosis.

The IGFBP-1 mRNA Expression in HepG2 Cells is Affected by Inhibition of Heme Biosynthesis

  • Park, Jong-Hwan;Park, Tae-Kyu;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.385-389
    • /
    • 2001
  • Insulin-like growth factor binding protein-1 (IGFBP-1) appears to be an important modular of the insulin growth factor (IGF) bioactivity in metabolic disease and chronic hypoxia. Treatment of desferrioxamine (Dfo), cobalt, or nickel in HepG2 cells stimulated the expression of IGFBP1 mRNA as hypoxia. However, the presence of ferric ammonium citrate (FAC) in the 1% $O_2$ decreased the upregulation of the IGFBP-1 mRNA expression. In addition, actinomycin D and cycloheximide abolished the increase in the expression of IGFBP-1 mRNA that was induced by Dfo and transition metals (cobalt and nickel). To obtain further information about the putative oxygen sensor, we postulate that putative heme proteins, responsible for the oxygen-sensing process in HepG2 cells, should be sensitive to hypoada. The mechanism of these upregulations of the IGFBP-1 mRNA expression by Dfo and transition metals was investigated by treatment with 2 mM of 4,6-dioxoheptanoic acid (DHA), an inhibitor of heme biosynthesis. The results showed that 1% $O_2$-, Dfo-, cobalt-, or nickel induced IGFBP-1 mRNA expressions in HepG2 cells were all markedly inhibited when the heme synthesis was blocked by DHA. We suggest that the IGFBP-1 mRNA expression in the HepG2 cell is regulated by 1% $O_2$, Dfo, cobalt, or nickel, implicating the involvement of the putative heme-containing oxygensensing molecule.

  • PDF

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

Effects of Kaempferol on Lippolysaccharide-induced Inflammation in Mouse Brain (Kaempferol이 LPS로 유도된 생쥐 중추신경계 염증에 미치는 영향)

  • Lee, Hung-Gi;Kim, Do-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • Objectives : Brain inflammation early activates the microglia and activated microglia secrete a variety of pro-inflammatory cytokines. Kaempferol, which is a flavonoid in Cuscutae Semen, shows a wide range of physiological activities, including neurons protection and anti-inflammatory actions through inhibition of pro-inflammatory mediators. The present study examined the modulatory effect of kaempferol on cytokines [tumor necrosis factor- alpha ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6)] and cyclooxygenase-2 (COX-2) mRNA expression and microglia activation in the brain tissue of the mouse. Methods : Kaempferol was administered orally three doses of 10, 20 and 30 mg/kg respectively, once 1 hour before the lippolysaccharide(LPS) (3 mg/kg, i.p.) injection. Brain tissue was removed at 4 hours after LPS injection. Cytokines and COX-2 mRNA expression in the brain tissue was measured by the quantitative real-time polymerase chain reaction (PCR) method. Iba1 expression was calculated by western blotting method. Microglia was observed with immunohistochemistry. Immunohistochemistry stained microglia was analyzed by using ImageJ software. Results : Kaempferol 20 and 30 mg/kg was significantly attenuated the expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA. Kaempfrol 10, 20 and 30 mg/kg significantly attenuated COX-2 mRNA expression in the brain tissue. Kaempferol 30 mg/kg significantly suppressed the increase of Iba1 protein expression by LPS. Kaempferol 30 mg/kg significantly decreased the number of microglia in the cerebral cortex and the number and cell size of microglia in the hypothalamic region and the area percentage of ionized calcium binding adaptor molecule 1(Iba1)-expressed microglia in the hippocampus. Conclusions : This results indicate that kaempferol plays an anti-inflammatory role in the brain.

IMMUNOHISTOCHEMICAL ASSAYS FOR THE EXPRESSION OF ANGIOGENIC SIGNALING MOLECULES AND MICROVESSEL DENSITY IN ADENOID CYSTIC CARCINOMAS OF HUMAN SALIVARY GLANDS (타액선 선양낭성암종에서 혈관형성 신호전달 물질의 발현과 미세혈관농도에 관한 면역조직화학적 연구)

  • Park, Young-Wook;In, Yeon-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.530-543
    • /
    • 2006
  • Adeonoid cystic carcinoma (ACC) is one of the most common malignant tumors of salivary glands. It is characterized by a relentless regrowth especially around nerve tissues and a high rate of hematogenous distant metastasis. Clinically most deaths from salivary ACC are caused by delayed lung metastases that are resistant to conventional chemotherapy. So, knowledge of cellular and molecular properties that influence the dissemination of metastatic tumor cells, is important for new treatment strategies of metastatic lesions. We determined expressions of angiogenic signaling molecules microvessel density (MVD) using surgical specimens of human salivary ACC. Protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR)-2, activated VEGFR-2, and human CD31 were assessed in 20 cases of salivary ACC by immunohistochemical staining. Most of the tumors, especially ACC with a tubulocribriform pattern, were positive for antibodies of VEGF, VEGFR-2, and activated VEGFR-2. The overall percentages of the 20 specimens expressing VEGF, VEGFR-2, activated VEGFR-2 were 90, 95, and 95%, respectively. Immunoreactivities of the biomarkers in salivary ACC were higher than those in normal salivary gland. Furthermore, immune-related cells as well as tumor cells expressed VEGF/VEGFR-2. Microvessel density of salivary ACC was higher than that of normal salivary gland (P<0.05). Taken together, angiogenic signaling molecules are actively expressed in salivary ACC. And we suggest that these molecules may have critical role in the hematogenous spread of salivay ACC, which has a propensity for delayed lung metastasis. Therefore, these biomarkers can be molecular targets for therapy of metastasis of salivary ACC.

Role of Retinoic Acid in Spontaneous Apoptosis of Human Neutrophils

  • Yang, Eun-Ju;Lee, Ji-Sook;Kim, Dong-Hee;Min, Bok-Kee;Hyun, Sung-Hee;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • Although retinoic acid has been known as either anti-inflammatory or pro-inflammatory molecule, depending on the cell type, its exact role in mature human neutrophils has not been fully explored. In this study, we investigate the effects of retinoic acid on neutrophil apoptosis and the associated mechanism and found that 9-cis retinoic acid (9CRA) significantly inhibits the spontaneous apoptosis of neutrophils. Its effect is increased by co-treatment with $TNF-\alpha$ (P<0.05). The 9CRA-induced inhibition is blocked by the following enzyme inhibitors: Ly 294002, phosphoinoside (PI)-3 kinase inhibitor, U73122, a phospholipase C (PLC) inhibitor, PP2, Src family protein inhibitor, SB202190, p38 MAPK inhibitor, and BAY-11-7085, NF-kB inhibitor. This study also demonstrates that all-trans retinoic acid suppresses spontaneous apoptosis, similar to the mechanism of inhibition exhibited by 9CRA. Phosphorylation of p38 MAPK decreases by 9CRA treatment. $Ik-B{\alpha}$ is degraded until 30 minutes after a time-dependent 9CRA treatment, but degradation can be inhibited by Ly 294002. These results indicate that 9CRA decreases p38 MAPK activation, induces NF-kB activation via PI-3 kinase, and also blocks cleavage of caspase 3. As these findings suggest, 9CRA has a molecular mechanism which may help pro-inflammatory response by blocking neutrophil apoptosis.

  • PDF