• Title/Summary/Keyword: Protein Kinase C(PKC)

Search Result 302, Processing Time 0.028 seconds

Effect of High Fat Diet and Calorie-restricted Diet on Protein Kinase C Activity in Mouse Epidermal Cell (고지방식이와 열량제한식이가 백서상피세포의 Protein Kinase C 활성에 미치는 영향)

  • Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.24 no.3
    • /
    • pp.149-156
    • /
    • 1991
  • To determine the effect of dietary fat and calorie level on protein kinase C(PKC) activity in mouse epidermal cells, female BALB/C mice (4weeks of age) were placed on high (24.6% ), moderate(5%) fat or calorie-restricted diets for at least 4 weeks. Diets were formulated on a nutrient/kcal basis such that the mice consumed the same amounts of protein. vitamins, minerals and fiber per kcal. PKC was assayed by the procedure of Wise et at. An apparent increase of PKC activity was observed from the aminal fed high fat diet when compared with the aminal fed moderate fat diet. PKC activity was decreased 40% by calorie restriction. In summary levels of dietary fat may contribute to mechanism of tumor promotion by increasing PKC activity in the mouse skin model.

  • PDF

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

Expression of protein kinase C in the testes of horse (말 정소내 protein kinase C의 발현)

  • Jin, Jae-kwang;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • To investigate the involvement of protein kinase C(PKC) isoenzyme in the testes which control spermatogenesis and hormone secretion, we examined cellular distribution of four types of PKC $\alpha$, ${\beta}I$, ${\delta}$ and ${\theta}$ in the horse testes using PKC antisera by western blot analysis and immunohistochemistry. By the western blot analysis, PKC $\alpha$ and ${\beta}I$ were detected at 82KD, while PKC ${\delta}$ and ${\theta}$ were detected at 80KD in the testes of both juvenile and adult horses. In juvenile horse, PKC $\alpha$, ${\delta}$ and ${\theta}$ except ${\beta}I$ were not detected in the cells of the testes, whereas PKC ${\beta}I$ was immunoreacted with only in spermatocytes. In adult, PKC $\alpha$, ${\beta}I$, ${\delta}$ and ${\theta}$isoenzymes were localized in interstitial cells of the testes. In the seminiferous tubules, PKC ${\beta}I$ is localized in spermatocyte, spermatid and spermatozoa, while PKC ${\delta}$ is localized only in spermatids. We suggest that this is a first report to localize PKC in the testes of horse and PKC isoenzymes are upregulated in the cells of horse testes depending on ages. These findings also suggest that certain PKC isoenzyme plays an important role in the signal transduction of spermatogenic cells and interstitial cells in horse testes.

  • PDF

Studies on the Differentiation of Skeletal Muscle Cells in uitro : The Phosphorylation and Down Regulation of Protein Kinase C in Myoblasts of Chick Embryos (근세포 분화에 관한 연구 계배의 Myoblasts에 있어서 Protein Kinase C (PKC)의 인 산화작용과 Down Regulation)

  • 문현근;최원철
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.161-172
    • /
    • 1992
  • In the short-term treahent of 12-0-tetradecanoylphorbol-13-acetate (TPA) or platelet-derived growth factor (PDGF), the'Wh and PDGF induced the Protein Kinase C (PKC) activation and migration from the cytoplasm to the peripheral nulcear membrane. And the activated PKC which was directly or indirectly stimulated by TPA or PDGF Phosphorylated many kinds of PKC's targeting proteins and induces various biological responses. Especially, the cytoplasmic PKC was phosphorylated within 1 hr and 10 min by TPA-and PDGF-treahent respectivelv. In the long-term treatment of TPA or PDGF, both of them induced the down-regulation and translocation of PKC in the mvoblasts. The down-regulation of PKC isozyrnes, the pattern of PKC I and ll was similar to the PKC 111 isozpnes in the cytoplasm. But in the nucleolus, the TPA did not induce and down-regulation or the inhibition of the immunoreactivity of PKC III antibody. This investigation indicates that each isozvmes of PKC mal be performed the different effects to the down-regulation of the cytoplasm or nucleolus. And douvn-regulated myoblasts contained low immunoreactivity of PKC antibodies.

  • PDF

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Studies on the Differentiation of Skeletal Muscle Cells in vitro:Protein Kinase C in the Differentiation of Skeletal Muscle Cells (근세포 분화에 관한 연구 : 근세포 분화에 있어서 Protein Kinase C)

  • 최원철;김한도;김정락
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.131-141
    • /
    • 1991
  • Treating 12-O-tetradecanoyIphorboI 13-acetate -TPA) or platelet~derived growth factor(PDGF), the signal transduction of protein Idnase C (PKC) is occurred by the phosphoryladon. However the targeting proteins phosphorylated by PKC were found to be different proteins in molecular weights when WA or PDGF wa~ treated to the myoblast. In the WA-treated myoblast cells, the protein of Mr. 20 I(d was phosphorylated. In the PDGF-treated cells, the protein of Mr. 40 Kd was phosphrylated, while the protein of Mr. 20 Kd which phosphorylated in the WA-treatment was dephosphorylated. These results indicate that not only WA and PDGF &e different in activating the signal transduction pathways, but also they may involve in the down reguladon of PI(C during the long-term treatment But PDGF gave rise more rapidly down reguladon than in the case of WA. Using immunocytochemical approach, two disdnct PKC isozymes, PKC II and PKC III, have been localized in cytoplasm and both cytoplasm and nuclsolus, respectively. Ther'efore, the expression of two types of PKC in the myoblast suggests that the isozymes of PKC may involve in each different pathway of signal transduction or down-reguladon.

  • PDF

Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells

  • Kazi, Julhash U.;Kim, Cho-Rong;Soh, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1981-1984
    • /
    • 2009
  • Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.

Activity of Protein Kinase C in Abnormally Proliferated Vascular Endothelial Cells (비정상적인 세포증식이 유도된 혈관 내피세포에서 Protein Kinase C에 대한 활성 분석)

  • Bae, Yong Chan;Park, Suk Young;Nam, Su Bong;Moon, Jae Sul;Choi, Su Jong
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • Purpose: To understand the pathogenesis of the disease that presents abnormally proliferated vascular endothelial cells, a model of DMH(1,2-dimethylhydrazine)-induced abnormal proliferation of HUVECs(Human Umbilical Vein Endothelial Cells) was made. We indirectly determined that Protein Kinase C(PKC) restricts the cellular proliferation and inhibits the manifestation of growth factor by using several inhibiting substances of the transmitter through our previous studies. Thereupon, we attempted to observe direct enzymatic activities of PKC and its correlation with the abnormal proliferation of vascular endothelial cells. Methods: $10^5$ HUVECs cells were applied to 6 individual well plates in three different groups; A control group cultured without treatment, a group concentrated with $0.75{\times}10^{-8}M$ DMH only, and a group treated with DMH & $5{\times}10^{-9}M$ Calphostin C, inhibitor of PKC. In analyzing the formation of intracellular PKC enzyme, protein separation was performed, and separated protein was quantitatively measured. PKC enzyme reaction was analyzed through Protein Kinase C Assay System (Promega, USA), and the results were analyzed according to Beer's law. Results: Enzymatic activity of PKC presented the highest in all reaction time of a group concentrated only with DMH, and the lowest in the control group. The group treated with DMH and the inhibitor revealed statistically lower enzymatic activity than group only with DMH in all reaction time, although higher than the control group. Conclusion: From the enzymatic aspect, most active and immediate reaction of the PKC was observed in the group concentrated with DMH only. The group treated with DMH & PKC inhibitor showed meaningful decrease. Accordingly, PKC holds a significant role in DMH-induced abnormal proliferation of vascular endothelial cells.

Direct effect of protein kinase C inhibitors on cardiovascular ion channels

  • Son, Youn-Kyoung;Hong, Da-Hye;Kim, Dae-Joong;Firth, Amy L.;Park, Won-Sun
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.559-565
    • /
    • 2011
  • Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.

Protein Kinase (PKC)-ε Interacts with the Serotonin Transporter (SERT) C-Terminal Region (Protein kinase (PKC)-ε와 serotonin transporter (SERT)의 C-말단과의 결합)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1451-1457
    • /
    • 2010
  • Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of cell-cell signaling in neuronal systems. The serotonin transporter (SERT) on the plasma membrane controls the extracellular 5-HT level by reuptake of released 5-HT from the synaptic cleft, but the underlying regulation mechanism is unclear. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of SERT and found a specific interaction with protein kinase C-$\varepsilon$ (PKC-$\varepsilon$), a PKC isotype that is characterized as a calcium-independent and phorbol ester/diacylglycerol-sensitive serine/threonine kinase. PKC-$\varepsilon$ bound to the tail region of SERT but not to other members of the $Na^+/Cl^-$ dependent SLC6 gene family in the yeast two-hybrid assay. The C-terminal region of PKC-$\varepsilon$ is essential for interaction with SERT. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. PKC-$\varepsilon$ phosphorylated the peptide of the SERT amino (N)-terminus in vitro. These results suggest that the phosphorylation of SERT by PKC-$\varepsilon$ may regulate SERT activity in plasma membrane.