Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.9.559

Direct effect of protein kinase C inhibitors on cardiovascular ion channels  

Son, Youn-Kyoung (Department of Physiology, Kangwon National University School of Medicine)
Hong, Da-Hye (Department of Physiology, Kangwon National University School of Medicine)
Kim, Dae-Joong (Department of Anatomy and Cell Biology, Kangwon National University School of Medicine)
Firth, Amy L. (The Salk Institute of Biological Studies)
Park, Won-Sun (Department of Physiology, Kangwon National University School of Medicine)
Publication Information
BMB Reports / v.44, no.9, 2011 , pp. 559-565 More about this Journal
Abstract
Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.
Keywords
Bisindolylmaleimide (I); Chelerythrine; Ion channel; Protein kinase C; Ro 31-8220; Rottlerin; Staurosporine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Shi, L. and Wang, C. (1999) Inhibitory effect of the kinase inhibitor chelerythrine on acetylcholine-induced current in PC12 cells. Arch. Biochem. Biophys. 368, 40-44.   DOI   ScienceOn
2 Murphy, C. T. and Westwick, J. (1992) Selective inhibition of protein kinase C. Effect on platelet-activating-factor-induced platelet functional responses. Biochem. J. 283, 159-164.   DOI
3 Keenan, C., Goode, N. and Pears, C. (1997) Isoform specificity of activators and inhibitors of protein kinase C gamma and delta. FEBS Lett. 415, 101-108.   DOI   ScienceOn
4 Zakharov, S. I., Morrow, J. P., Liu, G., Yang, L. and Marx, S. O. (2005) Activation of the BK (SLO1) potassium channel by mallotoxin. J. Biol. Chem. 280, 30882-30887.   DOI   ScienceOn
5 Wu, S. N., Wang, Y. J. and Lin, M. W. (2007) Potent stimulation of large-conductance $Ca^{2+}$-activated $K^+$ channels by rottlerin, an inhibitor of protein kinase C-delta, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A) cells. J. Cell Physiol. 210, 656-666.
6 Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff, L. (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261, 221-224.   DOI
7 Ghatta, S., Nimmagadda, D., Xu, X. P. and O'Rourke, S. T. (2006) Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol. Ther. 110, 103-116.   DOI   ScienceOn
8 Voutilainen-Mylylä, S., Tavi, P. and Weckström, M. (2003) Chelerythrine and bisindolylmaleimide I prolong cardiac action potentials by protein kinase C-independent mechanism. Eur. J. Pharmacol. 466, 41-51.   DOI   ScienceOn
9 Cho, H., Youm, J. B., Earm, Y. E. and Ho, W. K. (2001) Inhibition of acetylcholine-activated $K^+$ current by chelerythrine and bisindolylmaleimide I in atrial myocytes from mice. Eur. J. Pharmacol. 424, 173-178.   DOI   ScienceOn
10 Park, W. S., Son, Y. K., Ko, E. A., Choi, S. W., Kim, N. R., Choi, T. H., Youn, H. J., Jo, S. H., Hong, D. H. and Han, J. (2010) A Carbohydrate fraction, AIP1, from Artemisia Iwayomogi reduces the action potential duration by activation of rapidly activating delayed rectifier $K^+$ channels in rabbit ventricular myocytes. Korean J. Physiol. Pharmacol. 14, 119-125.   과학기술학회마을   DOI   ScienceOn
11 Lingameneni, R., Vysotskaya, T. N., Duch, D. S. and Hemmings, H. C. Jr. (2000) Inhibition of voltage-dependent sodium channels by Ro 31-8220, a 'specific' protein kinase C inhibitor. FEBS Lett. 473, 265-268.   DOI   ScienceOn
12 Thomas, D., Hammerling, B. C., Wimmer, A. B., Wu, K., Ficker, E., Kuryshev, Y. A., Scherer, D., Kiehn, J., Katus, H. A., Schoels, W. and Karle, C. A. (2004) Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X). Cardiovasc. Res. 64, 467-476.   DOI   ScienceOn
13 Ficker, E., Kuryshev, Y. A., Dennis, A. T., Obejero-Paz, C., Wang, L., Hawryluk, P., Wible, B. A. and Brown, A. M. (2004) Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol. Pharmacol. 66, 33-44.   DOI   ScienceOn
14 Choi, B. H., Choi, J. S., Jeong, S. W., Hahn, S. J., Yoon, S. H., Jo, Y. H. and Kim, M. S. (2000) Direct block by bisindolylmaleimide of rat Kv1.5 expressed in chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 293, 634-640.
15 Ko, J. H., Park, W. S., Kim, S. J. and Earm, Y. E. (2006) Slowing of the inactivation of voltage-dependent sodium channels by staurosporine, the protein kinase C inhibitor, in rabbit atrial myocytes. Eur. J. Pharmacol. 534, 48-54.   DOI   ScienceOn
16 Narahashi, T. (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxico. 79, 1-14.   DOI   ScienceOn
17 Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25.   DOI   ScienceOn
18 Goldin, A. L. (2001) Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871-894.   DOI   ScienceOn
19 Lo, C. F. and Breitwieser, G. E. (1994) Protein kinase-independent inhibition of muscarinic $K^+$ channels by staurosporine. Am. J. Physiol. 266, 1128-1132.   DOI
20 Choi, J. S., Hahn, S. J., Rhie, D. J., Jo, Y. H. and Kim, M. S. (1999) Staurosporine directly blocks Kv1.3 channels expressed in chinese hamster ovary cells. Naunyn Schmiedebergs Arch. Pharmacol. 359, 256-261.   DOI
21 Valenzuela, C., Delpon, E., Franqueza, L., Gray, P., Perez, O., Tamargo, J. and Snyders, D. J. (1996) Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circulation 94, 562-570.   DOI   ScienceOn
22 Park, W. S., Son, Y. K., Ko, E. A., Ko, J. H., Lee, H. A., Park, K. S. and Earm, Y. E. (2005) The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent $K^+$ channels in coronary arterial smooth muscle cells. Life Sci. 77, 512-527.   DOI   ScienceOn
23 Kim, A., Bae, Y. M., Kim, J., Kim, B., Ho, W. K., Earm, Y. E. and Cho, S. I. (2004) Direct block by bisindolylmaleimide of the voltage-dependent $K^+$ currents of rat mesenteric arterial smooth muscle. Eur. J. Pharmacol. 483, 117-126.   DOI   ScienceOn
24 Park, W. S., Han, J., Kim, N., Youm, J. B., Joo, H., Kim, H. K., Ko, J. H. and Earm, Y. E. (2005) Endothelin-1 inhibits inward rectifier $K^+$ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J. Cardiovasc. Pharmacol. 46, 681-689.   DOI   ScienceOn
25 Park, W. S., Son, Y. K., Han, J., Kim, N., Ko, J. H., Bae, Y. M. and Earm, Y. E. (2005) Staurosporine inhibits voltage- dependent $K^+$ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells. J. Cardiovasc. Pharmacol. 45, 260-269.   DOI   ScienceOn
26 French, R. J. and Shoukimas, J. J. (1981) Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes. Biophys. J. 34, 271-291.   DOI   ScienceOn
27 del Camino, D., Holmgren, M., Liu, Y. and Yellen, G. (2000) Blocker protection in the pore of a voltage-gated $K^+$ channel and its structural implications. Nature 403, 321-325.   DOI   ScienceOn
28 Hoshi, T., Zagotta, W. N. and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533-538.   DOI
29 Heginbotham, L. and MacKinnon, R. (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483-491.   DOI   ScienceOn
30 Snyders, D. J. and Yeola, S. W. (1995) Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ. Res. 77, 575-583.   DOI   ScienceOn
31 Kageyama, M., Mori, T., Yanagisawa, T. and Taira, N. (1991) Is staurosporine a specific inhibitor of protein kinase C in intact porcine coronary arteries? J. Pharmacol. Exp. Ther. 259, 1019-1026.
32 Ko, J. H., Park, W. S. and Earm, Y. E. (2005) The protein kinase inhibitor, staurosporine, inhibits L-type $Ca^{2+}$ current in rabbit atrial myocytes. Biochem. Biophys. Res. Commun. 329, 531-537.   DOI   ScienceOn
33 Eckly-Michel, A. E., Le Bec, A. and Lugnier, C. (1997) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85-88.   DOI   ScienceOn
34 Zamora, M. A., Dempsey, E. C., Walchak, S. J. and Stelzner, T. J. (1993) BQ123, and ETA receptor antagonist, inhibits endothelin-1-mediated proliferation of human artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 9, 429-433.   DOI   ScienceOn
35 Newton, A. C. (1997) Regulation of protein kinase C. Curr. Opin. Cell Biol. 9, 161-167.   DOI   ScienceOn
36 Van Renterghem, C. and Lazdunski, M. (1993) Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers. Arch. 425, 156-163.   DOI
37 Shimoda, L. A., Sylvester, J. T. and Sham, J. S. (1998) Inhibition of voltage-gated $K^+$ current in rat intrapulmonary arterial myocytes by endothelin-1. Am. J. Physiol. 274, 842-853.
38 Li, P. F., Maasch, C., Haller, H., Dietz, R. and von Harsdorf, R. (1999) Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100, 967-973.   DOI   ScienceOn
39 Inoue, Y., Oike, M., Nakao, K., Kitamura, K. and Kuriyama, H. (1990) Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J. Physiol. 423, 171-191.   DOI
40 Nakajima, T., Hazama, H., Hamada, E., Wu, S. N., Igarashi, K., Yamashita, T., Seyama, Y., Omata, M. and Kurachi, Y. (1996) Endothelin-1 and vasopressin activate $Ca^{2+}$-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated $Ca^{2+}$ influx. J. Mol. Cell Cardiol. 28, 707-722.   DOI   ScienceOn
41 Park, W. S., Ko, E. A., Han, J., Kim, N. and Earm, Y. E. (2005) Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J. Cardiovasc. Pharmacol. 45, 99-108.   DOI   ScienceOn
42 Jirousek, M. R., Giling, J. R., Gonzalez, C. M., Heath, W. F., McDonald, J. H. 3rd, Neel, D. A., Rito, C. J., Singh, U., Stramm, L. E., Melikian-Badalian, A., Baevsky, M., Ballas, L. M., Hall, S. E., Winneroski, L. L. and Faul, M. M. (1996) (S)-13-[(dimethylamino) methyl]-10,11,14,15-tetrahydro- 4,9:16,21-dimetheno-1H,13H-dibenzo [e,k] pyrrol [3,4-h] [1,4,13] oxadiazacyclohexadecene-1,3 (2H)-dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J. Med. Chem. 39, 2664-2671.   DOI   ScienceOn
43 Bruns, R. F., Miller, F. D., Merriman, R. L., Howbert, J. J., Heath, W. F., Kobayashi, E., Takahashi, I., Tamaoki, T. and Nakano, H. (1991) Inhibition of protein kinase C by calphostin C is light-dependent. Biochem. Biophys. Res. Commun. 176, 288-293.   DOI   ScienceOn
44 Green, L. J., Marder, P., Ray, C., Cook, C. A., Jaken, S., Musib, L. C., Herbst, R. S., Carducci, M., Britten, C. D., Basche, M., Eckhardt, S. G. and Thornton, D. (2006) Development and validation of a drug activity biomarker that shows target inhibition in cancer patients receiving enzastaurin, a novel protein kinase C-beta inhibitor. Clin. Cancer Res. 12, 3408-3415.   DOI   ScienceOn
45 Kobayashi, E., Ando, K., Nakano, H., Iida, T., Ohno, H., Morimoto, M. and Tamaoki, T. (1989) Calphostins (UCN- 1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physic-chemical properties and biological activities. J. Antibiot (Tokyo). 42, 1470-1474.   DOI
46 Kazanietz, M. G., Lewin, N. E., Bruns, J. D. and Blumberg, P. M. (1995) Characterization of the cysteine-rich region of the Caenorhabditis elegans protein Unc-13 as a high affinity phorbol ester receptor. Analysis of ligandbinding interactions, lipid cofactor requirements, and inhibitor sensitivity. J. Biol. Chem. 270, 10777-10783.   DOI   ScienceOn
47 Churchill, E. N., Qvit, N. and Mochly-Rosen, D. (2009) Rationally designed peptide regulators of protein kinase C. Trends Endocrinol. Metab. 20, 25-33.   DOI   ScienceOn
48 Herbert, J. M., Augereau, J. M., Gleye, J. and Maffrand, J. P. (1990) chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 172, 993-999.   DOI   ScienceOn
49 Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB. J. 9, 484-496.
50 Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278.   DOI   ScienceOn
51 Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. and Tomita, F. (1986) Staurosporine, a potent inhibitor of phospholipid/$Ca^{2+}$ dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397-402.   DOI   ScienceOn
52 Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F., Duhamel, L., Charon, D. and Kirilovsky, J. (1991) The bisindolylmaleimide GF 109203X is potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266, 15771-15781.
53 Roffey, J., Rosse, C., Linch, M., Hilbbert, A., McDonald, N. Q. and Parker, P. J. (2009) Protein kinase C intervention: the state of play. Curr. Opin. Cell Biol. 21, 268-279.   DOI   ScienceOn
54 Furusaki, A., Hashiba, N., Matsumoto, T., Hirano, A., Iwai, Y. and Omura, S. (1978) X-Ray crystal structure of staurosporine: a new alkaloid from a Streptomyces strain. J. Chem. Soc. Chem. Commun. 18, 800-801.
55 Meggio, F., Donella Deana, A., Ruzzene, M., Brunati, A. M., Cesaro, L., Guerra, B., Meyer, T., Mett, H., Fabbro, D., Furet, P., Dobrowolska, G. and Pinna, L. A. (1995) Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur. J. Biochem. 234, 317-322.   DOI   ScienceOn