• Title/Summary/Keyword: Protein Kinase A and C

Search Result 1,250, Processing Time 0.025 seconds

Role of Protein Kinase C in Abnormal Proliferation of Vascular Endothelial Cell induced by 1,2-Dimethylhydrazine; Analysis of Isoform (디메틸히드라진(1,2-Dimethylhydrazine)으로 유도된 혈관내피세포의 비정상적인 증식에서 단백활성효소 시이(Protein Kinase C)의 역할; 동종효소 분석)

  • Lee, Jin;Bae, Yong Chan;Park, Suk Young;Moon, Jae Sul;Nam, Su Bong
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.8-12
    • /
    • 2007
  • Purpose: Protein tyrosine kinase(PTK), protein kinase C(PKC), oxidase, as a mediator, have been known to take a role in signal transduction pathway of angiogenesis. The authors confirmed that PKC is the most noticeable mediator for abnormal proliferation of vascular endothelial cells through in vitro study model using the inhibitors, targeting the formation of three co-enzymes. In this study, we would investigate which isoform of PKC play an important role in abnormal angiogenesis of vascular endothelial cell. Methods: In 96 well plates, $10^4$ HUVECs(human umbilical vein endothelial cells) were evenly distributed. Two groups were established; the control group without administration of DMH(1,2-dimethylhydrazine) and the DMH group with administration of $7.5{\times}10^{-9}M$ DMH. RNA was extracted from vascular endothelial cell of each group and expression of the PKC isoform was analyzed by RT-PCR(reverse transcriptase-polymerase chain reaction) method. Results: RT-PCR analysis showed that $PKC{\alpha}$, $-{\beta}I$, $-{\beta}II$, $-{\eta}$, $-{\mu}$ and $-{\iota}$ were expressed in vascular endothelial cells of each group. DMH incresed the expression of $PKC{\alpha}$ and $PKC{\mu}$, and decreased $PKC{\beta}I$, $PKC{\beta}II$ expression dominantly. Conclusion: Based on the result of this study, it was suggested that $PKC{\alpha}$ and $PKC{\mu}$ may have significant role in abnormal proliferation of vascular endothelial cell.

The involvement of protein kinase C in the inhibitory effect of methoxamine on the thyrotropin-induced release of thyroxine in mouse thyroid (Mouse 갑상선에서 thyrotropin에 의한 thyroxine 유리에 미치는 methoxamine의 억제효과에 대한 protein kinase C의 관련)

  • Kim, Se-gon;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.508-517
    • /
    • 1998
  • There is evidence that the sympathetic nervous system exerts a control on thyroid function via an adrenergic innervation of thyroid cells. Although it is clear that the inhibitory effects of catecholamines result from an activation of ${\alpha}_1$-adrenoceptors, the mechanisms involved in ${\alpha}_1$-stimulation are not fully understood. The effects of methoxamine and protein kinase C (PKC) activator on the release of thyroxine ($T_4$) from mouse thyroid were studied to clarify the role of PKC in the regulation of $T_4$ release in vitro. The glands were incubated in the medium, samples of the medium were assayed for $T_4$ by EIA kits. Methoxamine inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by prazosin, an ${\alpha}_1$-adrenergic antagonist. Futhermore, the inhibitory effect of methoxamine on the $T_4$ release stimulated by TSH was prevented by chloroethylclonidine, an ${\alpha}_{1b}$-adrenoceptor antagonist, but not by WB4101, an ${\alpha}_{1a}$-adrenoceptor antagonist. Also methoxamine inhibited the forskolin-, cAMP- or IBMX-stimulated $T_4$ release. These inhibition were reversed by PKC inhibitors, such as staurosporine and $H_7$. PMA, a PKC activator, completely inhibited the TSH-stimulated $T_4$ release, and its inhibition was reversed by staurosporine and $H_7$, but not by chelerythrine. R59022 (a diacylglycerol kinase inhibitor), like methoxamine, also inhibited the TSH-stimulated $T_4$ release, and its inhibition was also reversed by staurosporine. The present study suggests that methoxamine inhibition of $T_4$ release from mouse thyroid can be induced by activation of the ${\alpha}_{1b}$-adrenoceptors and that it is mediated through the ${\alpha}_1$-adrenoceptor-stimulated PKC formation.

  • PDF

EARLY EVENTS OCCURRING DURING LIGHT SIGNAL TRANSDUCTION IN PLANTS AND FUNGI

  • Hasunuma, Kohji;Ogura, Yasunobu;Yabe, Naoto
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.73-81
    • /
    • 1998
  • Light signals constitute major factors in regulating gene expression and morphogenesis in plants and fungi. Phytochrome A and B were well characterized red and far-red light receptors in plants. Red light signals increased the phosphorylation of 18 kDa protein, which was identified to be nucleoside diphosphate (NDP) kinase. The NDP kinase catalyzed autophosphorylation and had a protein kinase activity similar to MAP (mitogen activated protein) kinase. As candidates for blue light photoreceptors, cDNAs for CRY1 and CRY2 were isolated. The N-teminal regions of these proteins showed a high hornology to DNA photolyase. The 120 kDa protein first detected in Pisurn sativurn, which showed blue light induced phosphorylation was also detected in Arabidopsis thaliana. The 120 kDa protein was encoded by the nphl gene, which regulated positive phototropism of the plant. In Neurospora crassa, blue light irradiation of the membrane fraction prepared from roycelia stimulated the phosphorylation of the 15 kDa protein, which was also identifmd to be an NDP kinase. Recent progress in understanding early events in light signal transduction mainly in Pisum sativum Alaska, Arabidopsis thaliana and Neurospora crassa was summarized.

  • PDF

Comparision of Regulatory Action of cAMP and cGMP on the Activation of Neutrophil Responses

  • Han, Chang-Hwang;Yoon, Young-Chul;Shin, Yong-Kyoo;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • The regulatory role of cyclic nucleotides in the expression of neutrophil responses has been examined. fMLP-stimulated superoxide production in neutrophils was inhibited by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), histamine, adenosine + theophylline, cAMP elevating agents, and 8-bromoguanosine 3' ,5' -cyclic monophosphate (8-BrcGMP) and sodium nitroprusside, cGMP elevating agents. Staurosporine, a protein kinase C inhibitor, genistein, a protein tyrosine kinase inhibitor and chlorpromazine, a calmodulin inhibitor, inhibited superoxide production by fMLP, but they did not further affect the action of DBcAMP on the stimulatory action of fMLP. DBcAMP, histamine, adenosine+theophylline and genistein inhibited myeloperoxidease release evoked by fMLP, whereas BrcGMP, sodium nitroprusside and staurosporine did not affect it. The elevation of $[Ca^{2+}]_i$ evoked by fMLP was inhibited by genistein and chlorpromazine but was not affected by staurosporine. DBcAMP exerted little effect on the initial peak in $[Ca^{2+}]_i$ response to fMLP but effectively inhibited the sustained rise. On the other hand, BrcGMP significantly inhibited both phases. fMLP-induced $Mn^{2+}$ influx was inhibited by either DBcAMP or BrcGMP. These results suggest that fMLP-stimulated neutrophil responses may be regulated by cAMP more than cGMP. cAMP and cGMP appear not affect stimulated responses by direct protein kinase C activation. Their regulatory action on the stimulated neutrophil responses may be not influenced by other activation processes.

  • PDF

Identification of Phosphatidylcholine-Phospholipase D and Activation Mechanisms in Rabbit Kidney Proximal Tubule Cells

  • Chung, Jin-Ho;Chae, Joo-Byung;Chung, Sung-Hyun
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.11-16
    • /
    • 1996
  • The present study showed that receptor-mediated activation of rabbit kidney proximal tubule cells by angiotensin II, the $Ca^{2+}$ ionophore A23187, or the protein kinase C activator phorbol myristate acetate (PMA) all stimulated phospholipase D (PLD). This was demonstrated by the increased formation of phosphatidic acid, and in the presence of 0.5% ethanol, phosphatidylethanol (PEt) accumulation. Angiotensin II leads to a rapid increase in phosphatidic acid and diacylglycerol, and phosphatidic acid formation preceeded the formation of diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine hydrolyzed by Pill. On the other hand, EGTA substantially attenuated angiotensin II and A23187-induced PEt formation, and when the cells were pretreated with verapamil angiotensin II-induced Pill activation was completely abolished. These results provide the evidence that calcium ion influx is essential for the agonist-induced Pill activation. In addition, staurosporine, an inhibitor of protein kinase C, strongly inhibited PMA-induced PEt formation, but was ineffective on angiotensin II-induced PEt accumulation. $GTP{\gamma}S$ also stimulates PEt formation in digitonin-permeabilized cells, but pretreatment of the cells with pertussis toxin failed to suppress angiotensin II-induced PEt formation. From these results, we conclude that in the rabbit kidney proximal tubule cells the mechanisms of angiotensin II- and PMA-induced Pill activation are different from each other and mediated via a pertussis toxin-insensitive trimeric G protein.

  • PDF

Protein Kinase (PKC)-ε Interacts with the Serotonin Transporter (SERT) C-Terminal Region (Protein kinase (PKC)-ε와 serotonin transporter (SERT)의 C-말단과의 결합)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1451-1457
    • /
    • 2010
  • Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of cell-cell signaling in neuronal systems. The serotonin transporter (SERT) on the plasma membrane controls the extracellular 5-HT level by reuptake of released 5-HT from the synaptic cleft, but the underlying regulation mechanism is unclear. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of SERT and found a specific interaction with protein kinase C-$\varepsilon$ (PKC-$\varepsilon$), a PKC isotype that is characterized as a calcium-independent and phorbol ester/diacylglycerol-sensitive serine/threonine kinase. PKC-$\varepsilon$ bound to the tail region of SERT but not to other members of the $Na^+/Cl^-$ dependent SLC6 gene family in the yeast two-hybrid assay. The C-terminal region of PKC-$\varepsilon$ is essential for interaction with SERT. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. PKC-$\varepsilon$ phosphorylated the peptide of the SERT amino (N)-terminus in vitro. These results suggest that the phosphorylation of SERT by PKC-$\varepsilon$ may regulate SERT activity in plasma membrane.

Endoplasmic Reticulum Stress Induces CAP2 Expression Promoting Epithelial-Mesenchymal Transition in Liver Cancer Cells

  • Yoon, Sarah;Shin, Boram;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.569-579
    • /
    • 2021
  • Cyclase-associated protein 2 (CAP2) has been addressed as a candidate biomarker in various cancer types. Previously, we have shown that CAP2 is expressed during multi-step hepatocarcinogenesis; however, its underlying mechanisms in liver cancer cells are not fully elucidated yet. Here, we demonstrated that endoplasmic reticulum (ER) stress induced CAP2 expression, and which promoted migration and invasion of liver cancer cells. We also found that the ER stress-induced CAP2 expression is mediated through activation of protein kinase C epsilon (PKCε) and the promotor binding of activating transcription factor 2 (ATF2). In addition, we further demonstrated that CAP2 expression promoted epithelial-mesenchymal transition (EMT) through activation of Rac1 and ERK. In conclusion, we suggest that ER stress induces CAP2 expression promoting EMT in liver cancer cells. Our results shed light on the novel functions of CAP2 in the metastatic process of liver cancer cells.

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

Cytotoxic and Apoptotic Effects of Echinomycin on Murine Leukemia Cells

  • Kim, Tae-Ue;Yang, Se-Hwan;Kim, Soo-Kie
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.489-492
    • /
    • 1996
  • A number of anticancer-chemotherapeutic agents induce cell death through the process of apoptosis. Effects of echinomycin, an anticancer agent on cancer progression, were investigated in P388 murine leukemia cells. First, according to the results of cytotoxicity measurement. $IC_{50}$ of echinomycin was 1.12 nM, a relatively lower value than the other examined anticancer agents, mitomycin-C and etoposide Second, the DNA fragmentation assay for echinomycin-treated cells exhibited that echinomycin was able to induce apoptosis in a shorter period of time and with a lower dose than mitomycin-C or etoposide. The data of DNA fragmentation were quite comparable to those of cytotoxicity measurement. Finally we showed that mitogen-activated protein (MAP) kinase, a key protein in cell mitosis, was translocated into the nucleus from the cytosol after treatment with echinomycin. These findings suggest that a MAP kinase-related process may be involved in apoptosis induced by echinomycin.

  • PDF

Effect of Cyclic Nucleotides on Phorbol Ester-Induced Contraction in Rabbit Carotid Artery

  • Jung, Dong-Keun;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.39-50
    • /
    • 1995
  • This study was designed to clarify the action of cyclic nucleotides, cyclic AMP and cyclic GMP, on phorbol 12,13-dibutyrate (PDBu)-induced contraction in rings isolated from rabbit carotid artery. Arterial rings, 2 mm in width, were myographied isometrically in an isolated organ bath. PDBu produced slowly developing, sustained contraction in rabbit carotid artery, in a dose dependent manner, which was independent of extracellular $Ca^{2+}$ PDBu-induced contraction was relaxed by staurosporine, which suggests that PDBu-induced contraction is mediated by protein kinase C (PKC). $^{45}Ca^{2+}$ uptake by rabbit carotid artery was increased by PDBu during depolarization, but not in control. Isoproterenol and sodium nitroprusside (SNP) relaxed phenylephrine-induced contraction. However, SNP but not isoproterenol relaxed the contraction induced by PDBu. Acetylcholine relaxed PDBu-induced contraction in the presence of the endothelium. 8-bromo-cyclic AMP, a permeable analogue of cyclic AMP, suppressed phenylephrine-induced contraction but not PDBu-induced contraction. 8-bromo cyclic GMP relaxed both of them with dose dependency. A large dose of forskolin relaxed PDBu-induced contraction. PDBu increased cyclic AMP without considerable change in the level of cyclic GMP. Based on these findings, PDBu-induced contraction of rabbit carotid artery was relaxed by cyclic GMP more effectively than cyclic AMP, and the action of cyclic AMP could be mediated by cyclic GMP dependent protein kinase. Therefore it is suggested that the antagonistic action between protein kinase C and cyclic GMP-dependent protein kinase plays a major role in the regulation of vascular tone.

  • PDF