• 제목/요약/키워드: Protein Kinase A and C

검색결과 1,263건 처리시간 0.027초

$17\beta$-estradiol의 고혈압 유도반응 억제와 인체적용 전기자극의 $17\beta$-estradiol 활성 증가 (The inhibition of Hypertension-related Response by $17\beta$-estradiol and the Increase of $17\beta$-estradiol Activity by Electrical Stimulation)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제21권2호
    • /
    • pp.109-116
    • /
    • 2009
  • Purpose: $17\beta$-estradiol is the most active endogenous estrogen, which is related to favorable changes in the plasma lipid profile, to relaxation of the coronary vessels, and to a decrease in platelet aggregation and vascular smooth muscle cell migration. However, although the beneficial effect of estrogens on plasma lipoproteins (ie, lowering low-density lipoprotein and increasing high-density lipoprotein cholesterol) contributes to cardiovascular protection, it does not fully account for the protective effect, particularly in the application of physical therapy, including low frequency electrical stimulation. Methods: The aim of this study was to demonstrate the inhibition of stressors, such as endothelin-1 (ET-1), serotonin (5-hydroxytryptamine, 5-HT), prostaglandin $F2\alpha$ ($PGF2\alpha$), and a protein kinase C (PKC) activator 12-deoxyphorbol 13-isobutyrate (DPB), induced isometric tension by $17\beta$-estradiol in vascular smooth muscle strips, respectively. In addition, the effects of low frequency electrical stimulation at the meridian points (CV-3, -4, Ki-12, SP-6, LR-3, BL-25, -28, -32, -52) on the indirect antihypertensive effect were examined by monitoring the changes in the serum $17\beta$-estradiol concentration in healthy volunteers. Results: Isometric tension analysis showed that the responses of inhibited tension by $17\beta$-estradiol were similar to the same stressors in rat aortic smooth muscle strips. Furthermore, although the continued amplitude modulation (AM) type of electrical stimulation was not increased significantly by electrical stimulation, the current of the frequency modulation (FM) type of low frequency electrical stimulation increased the serum $17\beta$-estradiol concentration in normal volunteers. Conclusion: These results, in part, suggest that $17\beta$-estradiol has the capacity to supress stressor-induced muscle tension, and electrical stimulation, particularly current of the FM type, has a modulatory effect on the sex steroid hormones, particularly $17\beta$-estradiol, in healthy volunteers.

  • PDF

마우스 대식세포주인 RAW 264.7 세포에서 오공(蜈蚣)의 항염증 효과 (Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells)

  • 조일주;최미옥;박민철;송호준;박성주
    • 대한본초학회지
    • /
    • 제26권3호
    • /
    • pp.23-29
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Scolopendrae Corpus (SC) on lipopolysaccharide (LPS)-induced inflammatory response. Methods : To evaluate the anti-inflammatory effects of SC, we examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (TNF-a, inteleukin (IL)-$1{\beta}$ and IL-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and inhibitory kappa B a ($I{\kappa}$-Ba) using western blot. Furthermore, we also investigated the effect of SC on LPS-induced endotoxin shock. Results : Extract from SC itself had not any cytotoxic effect in RAW 264.7 cells. Aqueous extract from SC inhibited LPS-induced NO production and iNOS expression. SC pre-treatment also inhibited IL-$1{\beta}$, IL-6 production in RAW 264.7 cells. To investigate inhibitory effects of SC on inflammatory mediators, activation of MAPKs was examined. SC inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of $I{\kappa}$-$B{\alpha}$ in RAW 264.7 cells stimulated with LPS. Furthermore, SC administration reduced LPS-induced endotoxin shock. Conclusion : SC down-regulated LPS-induced production of inflammatory mediators through inhibition of activation of p38, JNK and degradation of $I{\kappa}$-$B{\alpha}$. Taken together, our results suggest that SC may be a beneficial drug against inflammatory diseases such as sepsis.

Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy

  • Ji-Soo Jeong;Jeong-Won Kim;Jin-Hwa Kim;Chang-Yeop Kim;Je-Won Ko;Tae-Won Kim
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.52-58
    • /
    • 2024
  • Background: Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated. Methods: We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation. Results: KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis. Conclusion: Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.

Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells

  • Han, Myoung-Sik;Han, Im-Ho;Lee, Dahae;An, Jun Min;Kim, Su-Nam;Shin, Myoung-Sook;Yamabe, Noriko;Hwang, Gwi Seo;Yoo, Hye Hyun;Choi, Suk-Jung;Kang, Ki Sung;Jang, Hyuk-Jai
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.135-140
    • /
    • 2016
  • Background: Nephrotoxicity is a common side effect of medications. Panax ginseng is one of the best-known herbal medicines, and its individual constituents enhance renal function. Identification of its efficacy and mechanisms of action against drug-induced nephrotoxicity, as well as the specific constituents mediating this effect, have recently emerged as an interesting research area focusing on the kidney protective efficacy of P. ginseng. Methods: The present study investigated the kidney protective effect of fermented black ginseng (FBG) and its active component ginsenoside 20(S)-Rg3 against cisplatin (chemotherapy drug)-induced damage in pig kidney (LLC-PK1) cells. It focused on assessing the role of mitogen-activated protein kinases as important mechanistic elements in kidney protection. Results: The reduced cell viability induced by cisplatin was significantly recovered with FBG extract and ginsenoside 20(S)-Rg3 dose-dependently. The cisplatin-induced elevated protein levels of phosphorylated c-Jun N-terminal kinase (JNK), p53, and cleaved caspase-3 were decreased after cotreatment with FBG extract or ginsenoside 20(S)-Rg3. The elevated percentage of apoptotic LLC-PK1 cells induced by cisplatin treatment was significantly abrogated by cotreatment with FBG and the ginsenoside 20(S)-Rg3. Conclusion: FBG and its major ginsenoside 20(S)-Rg3, ameliorated cisplatin-induced nephrotoxicity in LLC-PK1 cells by blocking the JNKep53ecaspase-3 signaling cascade.

C57BL/6N 생쥐에서 골쇄보(骨碎補) 추출물을 이용한 발모(發毛)효과에 대한 실험적 연구 (Experimental Studies on the Hair Growth Activity of Drynariae Rhizoma Extracts in C57BL/6N Mice)

  • 정석영;정일국;김대근;조한영;정한솔;이창현
    • 동의생리병리학회지
    • /
    • 제21권2호
    • /
    • pp.453-461
    • /
    • 2007
  • Drynariae Rhizoma has been used for promotes mending of the sinews and bone, tonifies the kidney for such symptoms as weak low back and knees, and stimulates the growth of hair as a tinctute for alopecia in oriental medicine. This experiment examined the effect of an acetone extracts of Drynariae Rhizomas(GSB-1), its EtoAc fraction(GB-2) and n-buOH fraction(GSB-3), on hair growth activity of the C57BL/6L mice after topical application to skin. First, We examined on hair growth activity of extracts of Drynariae Rhizomas compare to control and 1 % minoxidil groups. Second, We investigated on the number of hair follicle and mast cells after topical application of extracts of the Drynariae Rhizomas to skin for 16 day. Third, We investigated immunoreactive density of vascular endothelial growth factor(VEGF), protein kinase C-${\alpha}$(PKC-${\alpha}$) and stem(mast) cell factor(SCF) in skin of C57BL/6N mice by immunohistochemical methods. The results were as follows : Hair growth effect of acetone extracts of Drynariae Rhizomas, its EtoAc fraction and n-BuOH fraction was observed in 98 %, 96 % and 60 % in hair removed skin area in 16 day respectively, Immunoreactive density of VEGF in skin of GSB-1 group was weakly stained compare to control group in 10 day, But GSB-2 and GSB-3 groups were mildy stained in bulge and root sheath of skin. Immunolocalization of SCF antigens was observed weakly stained density in epidermis, bulge, stem cells and dermal papilla of control gruop. but in experimental group, immunoreactivity of SCF antigens was observed mildly stained density in bulge, epidermis and root sheath of GSB-1 gruop, heavily stained density in epidermis, bulge and root sheath of GSB-2 and GSB-3 groups to the hair removal skin of C57BL/6N mice on day 10. These experiment suggest that acetone extracts of Drynariae Rhizomas and its EtoAc fraction may be used for topical treatment of alopecia areata.

RAW 264.7 세포에서의 단풍잎돼지풀 추출물의 항염증 활성 검증 (Anti-inflammatory Activities Verification of Ambrosia trifida L. extract in RAW 264.7 Cells)

  • 유단희;이진영
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.79-89
    • /
    • 2020
  • 본 연구는 단풍잎돼지풀 70% 에탄올 추출물의 항염증 활성을 검증하기 위해 수행되었다. 단풍잎돼지풀 70% 에탄올 추출물의 전자공여능 측정과 ABTS+ 라디칼 소거능을 측정한 결과, 1,000 ㎍/ml 농도에서 각각 84.1%와 92.5%의 효과를 나타냈고, 수렴활성 측정을 한 결과 1,000 ㎍/ml 농도에서 94.7%의 효과를 보였다. 단풍잎돼지풀 70% 에탄올 추출물의 항염증 효과를 측정하기 위해 lipopolysaccharide (LPS)로 유도된 RAW 264.7세포를 사용하여 효과를 측정하였다. 세포에서 단풍잎돼지풀 추출물의 세포독성을 측정하기 위해 MTT assay를 수행하였다. 그 결과, 500 ㎍/ml 농도에서 90% 이상의 생존율을 보였다. Nitric oxide 생산을 억제하는 효과를 측정한 결과, 단풍잎돼지풀 추출물에서 농도가 증가할수록 NO 생성이 감소되는 효과를 확인하였다. 단풍잎돼지풀 추출물의 단백질 발현효과를 western blot을 통해 25, 50, 100 ㎍/ml 농도에서 측정하였고, 양성 대조군으로 β-actin을 사용하였다. 그 결과, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 단백질 발현효과는 100 ㎍/ml 농도에서 8.6%, 25.1%의 감소됨을 확인하였다. ERK1/2, p38, JNK와 Iκ-Bα의 단백질발현 효과는 인산화를 통해 확인하였고, 농도의존적으로 감소하였음을 확인하였다. mRNA 발현 억제 효과를 RT-PCR을 통해 25, 50, 100 ㎍/ml의 농도에서 측정하였고, 양성 대조군으로 GAPDH를 사용하였다. 그 결과, LPS로 유도된 대식세포에서 iNOS, COX-2, interleukin (IL)-1β, IL-6, TNF-α의 mRNA 발현 억제 효과는 농도가 증가할수록 발현이 감소됨을 확인하였다. 결론적으로 단풍잎돼지풀 추출물은 염증을 억제할 수 있는 가능성이 있는 항염증 소재의 가능성을 증명하였다.

3T3-L1 전구지방세포에서 개구리자리(Ranunculus sceleratus) 추출물의 AMPK 신호전달을 통한 지방생성 억제 효과 (Extract of Ranunculus sceleratus Reduced Adipogenesis by Inhibiting AMPK Pathway in 3T3-L1 Preadipocytes)

  • 김예지;조성필;이희주;홍금란;김경현;류시윤;정주영
    • 한방비만학회지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2022
  • Objectives: Adipogenesis is the process by which pre-adipocytes are differentiated into adipocytes. It also plays an important role in adipocyte formation and lipid accumulation. Ranunculus sceleratus (R. sceleratus) extracts are used for the treatment of various diseases such as hepatitis, jaundice, and tuberous lymphadenitis in oriental medicine. However, its effect on adipogenesis has not yet been studied. In this study, we investigated the effects of R. sceleratus on adipogenesis in 3T3-L1 cells. Methods: Cells were treated with 50, 100, and 200 ㎍/ml of R. sceleratus and cell viability was evaluated. To differentiate the 3T3-L1 preadipocytes, a 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI) solution were used. The accumulation of lipid droplets was determined by Oil Red O staining. The expression levels of adipogenesis-related proteins were also determined. Results: MDI solution differentiated the preadipocytes into adipocytes and accumulation of lipids was observed in the differentiated 3T3-L1 cells. Interestingly, the amount of lipid droplets was reduced after R. sceleratus treatment. In addition, the expression levels of key adipogenic transcription factors, such as CCAAT/enhancer-binding proteins-𝛼 (C/EBP-𝛼) and peroxisome proliferator-activated receptors-𝛾 (PPAR-𝛾) were also reduced after R. sceleratus treatment. Furthermore, R. sceleratus increased AMP-activated kinase (AMPK) phosphorylation and decreased sterol regulatory element-binding protein-1 expression. Conclusions: Our results showed that R. sceleratus reduced preadipocyte differentiation by inhibiting C/EBP-𝛼 and PPAR-𝛾 levels via the AMPK pathway. Therefore, we suggest that R. sceleratus may be potentially used as an anti-adipogenic agent.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.