• Title/Summary/Keyword: Protein C

Search Result 11,822, Processing Time 0.057 seconds

Suppression of Ceramide-induced Cell Death by Hepatitis C Virus Core Protein

  • Kim, Jung-Su;Ryu, Ji-Yoon;Hwang, Soon-Bong;Lee, Soo-Young;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2004
  • The hepatitis C virus (HCV) core protein is believed to be one of viral proteins that are capable of preventing virus-infected cell death upon various stimuli. But, the effect of the HCV core protein on apoptosis that is induced by various stimuli is contradictory. We examined the possibility that the HCV core protein affects the ceramide-induced cell death in cells expressing the HCV core protein through the sphingomyelin pathway. Cell death that is induced by $C^2$-ceramide and bacterial sphingomyelinase was analyzed in 293 cells that constitutively expressed the HCV core protein and compared with 293 cells that were stably transfected only with the expression vector. The HCV core protein inhibited the cell death that was induced by these reagents. The protective effects of the HCV core protein on ceramide-induced cell death were reflected by the reduced expression of $p21^{WAF1/Cip1/Sid1}$ and the sustained expression of the Bcl-2 protein in the HCV core-expressing cells with respect to the vector-transfected cells. These results suggest that the HCV core protein in 293 cells plays a role in the modulation of the apoptotic response that is induced by ceramide. Also, the ability of the HCV core protein to suppress apoptosis might have important implications in understanding the pathogenesis of the HCV infection.

Molecular and Biochemical Studies on the DNA Replication of Bacteriophage T7: Functional Analysis of Amino-terminal Region of Gene 2.5 Protein

  • Kim, Young-Tae;Lee, Sung-Gu;Kim, Hak-Jun
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.484-489
    • /
    • 1995
  • The product of bacteriophage T7 gene 2.5 is a single-stranded DNA binding protein and plays an important role in T7 DNA replication, recombination, and repair. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth (Kim and Richardson, 1993). The C-terminal truncated gene 2.5 protein ($GP2.5-{\Delta}21C$) cannot substitute for wild-type gene 2.5 protein in vivo; suggesting that the C-terminal domain of gene 2.5 protein is essential for protein-protein interactions (Kim and Richardson, 1994; J. Biol. Chem. 269, 5070-5078). Truncated gene 2.5 proteins lacking 19 residues ($GP2.5-{\Delta}19N$) and 39 residues ($GP2.5-{\Delta}39N$) from the amino-terminal domain were constructed by in vitro mutagenesis. $GP2.5-{\Delta}19N$ can support the growth of T7 phage lacking gene 2.5 while $GP2.5-{\Delta}39N$ cannot substitute for wild-type gene 2.5 protein in vivo; however, its ability to bind to single-stranded DNA is not affected. These results clearly demonstrate that the 20~39 amino-terminal region of gene 2.5 protein is required for T7 growth in vivo but may not be involved in DNA binding activity.

  • PDF

Regulation of Corynebacterium ammoniagenes purF and Isolation of purF-Specific Regulatory Proteins (Corynebacterium ammoniagenes에서 purF 유전자의 조절 및 이에 특이적인 조절 단백질의 분리)

  • Lee, Seok-Myung;Kim, Youn-Hee;Lee, Heung-Shick
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.233-238
    • /
    • 2009
  • The expression of Corynebacterium ammoniagenes purF was analyzed by utilizing a plasmid carrying a cat gene fused to the purF promoter region. Adenine and guanine repressed the expression of the purF gene by 20~30% but hypoxanthine did not exert such repressive effect. The expression purF was maximal at the late log phase and remained constant throughout the stationary phase. Promoter $P_{180}$ which was developed in C. glutamicum was also functional in C. ammoniagenes, achieving maximal activity at the late log phase. The promoter outperformed Escherichia coli $P_{tac}$ promoter by 40~50% level. DNA-affinity purification identified a protein which could bind to the promoter region of the purF gene. The protein showed high similarity to the CRP-family transcriptional regulator encoded by NCgl0120 in C. glutamicum. The size of the screened protein agreed with the expected protein size from the ORF NCgl0120. The corresponding gene in C. ammoniagenes encoded a 42 kDa polypeptide composed of 400 amino acids with expected pI of 4.9. The encoded protein showed 14.1% and 15.8% identity with E. coli and Bacillus subtilis PurR, respectively, suggesting that the isolated protein might be a novel type of regulatory protein involved in the regulation of purine metabolism.

Role of C-terminal 7 Amino Acids of N4SSB Protein in Its in vivo Activity (N4SSB 단백질의 C-말단기의 7개의 아미노산이 N4SSB 단백질의 in vivo 활성에 미치는 영향)

  • Choi, Mieyoung
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.248-253
    • /
    • 1998
  • Bacteriophage N4, a lytic phage specific for Esherichia coli K12 strain encodes single-stranded DNA-binding protein, N4SSB (bacteriophage N4-coded single-stranded DNA-binding protein). N4SSB protein is originally identified as a protein required for N4 DNA replication. N4SSB protein is also required for N4 late transcription, which is catalyzed by E. coli ${\sigma}^{70}$ RNA polymerase. N4 late transcription does not occur until N4SSB protein is synthesized. Recently it is reported that N4SSB protein is essential for N4 DNA recombination. Therefore N 4SSB protein is a multifunctional protein required for N4 DNA replication, late transcription, and N4 DNA recombination. In this study, a variety of mutant N4SSB proteins containing internal deletions or substitutions were constructed to define and characterize domains important for N4 DNA replication, late transcription, and N4 DNA recombination. Test for the ill vivo activity of these mutant N4SSBs for N4 DNA replication, late transcription, and N4 DNA recombination was examined. The results suggest that C-terminal 7 amino acid residues are important for the activity of N4SSB. Three lysine residues, which are contained in this region play important roles on N4SSB activity.

  • PDF

Additive Role of the Vestibular End Organ and Baroreceptors on the Regulation of Blood Pressure in Rats

  • Lan, Yan;Yang, Yan-Zhao;Jiang, Xian;Li, Li-Wei;Jin, Guang-Shi;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.367-373
    • /
    • 2013
  • Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE). Baroreflex sensitivity became positive following sinoaortic denervation (SAD) during infusion of PE and attenuated sensitivity during infusion of SNP. Baroreflex sensitivity also became positive following double ablation (BL+SAD) during infusion of PE, and attenuated sensitivity during infusion of SNP. c-Fos protein expression increased significantly in the RVLM in the sham group after SNP administration. However, the BL, SAD, and SAD+BL groups showed significant decreases in c-Fos protein expression compared with that in the sham group. The SAD group showed more reduced c-Fos protein expression than that in the BL group, and the SAD+BL group showed less expression than that in the SAD group. These results suggest that the vestibular system cooperates with baroreceptors to maintain arterial pressure during hypotension but that baroreceptors regulate arterial pressure during both hypotension and hypertension. Additionally, afferent signals for maintaining blood pressure from the vestibular end organs and the baroreceptors may be integrated in the RVLM.

Production of Plant Protein Concentrate and Yeast Biomass from Radish Greens (무청즙액을 이용한 녹엽단백질과 효모균체의 생산)

  • Rhee, Yeong-Sang;Kyung, Kyu-Hang;Yoo, Yang-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 1992
  • Radish green juice was used as a dual source for the production of plant protein precipitate and Candida utilis biomass. Precipitates ranging from 10.0 to 16.5g were obtained from a liter of radish green juice by heating at 80-10$0^{\circ}C$C for 1 to 10 min or by modification of the pH of radish green juice. Crude protein content of the precipitate was between 25 and 38%. The residue remaining after protein precipitation was used in turn for the cultivation of the yeast, C. utilis, in order to produce yeast biomass. C. utilis grew well in radish green residual juice and completed growth within 24 hr at 3$0^{\circ}C$ and 200rpm in shake flask experiments. Maximum dry cell weight obtainable from a liter of radish green residual juice was 19.5g, when the yeast was grown on the juice residue diluted 3 times or more with water to make sugar content be equal to or less than about 1.0%. Supplementation of 3-fold diluted radish green residual juice with yeast extract and (NH$_4$)SO$_4$ enhanced yeast biomass production and cell protein content significantly. Total high protein material obtainable from a liter of radish green juice was 33.0g.

  • PDF

Synaptic Vesicle Protein 2 (SV2) Isoforms

  • Bandala, Cindy;Miliar-Garcia, A.;Mejia-Barradas, C.M.;Anaya-Ruiz, M.;Luna-Arias, J.P.;Bazan-Mendez, C.I.;Gomez-Lopez, M.;Juarez-Mendez, S.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5063-5067
    • /
    • 2012
  • New molecular markers of cancer had emerged with novel applications in cancer prevention and therapeutics, including for breast cancer of unknown causes, which has a high impact on the health of women worldwide. The purpose of this research was to detemine protein and mRNA expression of synaptic vesicle 2 (SV2) isoforms A, B and C in breast cancer cell lines. Cultured cell lines MDA-MB-231, SKBR3, T47D were lysed and their protein and mRNA expression analyzed by real-time PCR and western blot technique, respectively. SV2A, B proteins were identified in non-tumor (MCF-10A) and tumor cell lines (MDA-MB-231 and T47D) while SV2C only was found in the T47D cell line. Furthermore, the genomic expression was consistent with protein expression for a such cell line, but in MDA-MB-231 there was no SV2B genomic expression, and the SV2C mRNA and protein were not found in the non tumoral cell line. These findings suggest a possible cellular transdifferentiation to neural character in breast cancer, of possible relevance to cancer development, and point to possible use of SV2 as molecular marker and a vehicle for cancer treatment with botulinum toxin.

Study on the Preparation and Utilization of Sardine Protein (정어리 단백질 제조와 이용에 관한 연구)

  • 이경하;차월석;김종수
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.426-429
    • /
    • 2001
  • To utilize sardine protein more effectively, fish meat paste products mixing sardine protein concentrate with pollack frozen meat paste at the ratio 0%, 15%, 20% and 25% were produced, and the change of firmness, sensory evaluation and the properties of amino and fatty acid were investigated. The quantity of sardine protein and it was almost gushed out around one hour at 100$\^{C}$. The firmness of the meat paste product was found as 0.54% and was better when the concentrated sardine protein was added at the ratio 15% and it was much higher than just that of pollack meat paste. In that case, total amino acid was the highest as 90.701 mg/g from the point of view of the amino acid composition. In terms of the fatty acid composition, unsaturated fatty acid of raw and boiled sardine was 61,8634% and 61.9384% each. We could find out that the high value of C$\_$20:5/ and C$\_$22:6/ of raw sardine was 7.2931% and 27.7843%, respectively.

  • PDF

Diverse characters of Brennan's paw incision model regarding certain parameters in the rat

  • Kumar, Rahul;Gupta, Shivani;Gautam, Mayank;Jhajhria, Saroj Kaler;Ray, Subrata Basu
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.168-177
    • /
    • 2019
  • Background: Brennan's rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods: Separate groups of Sprague-Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and $10{\mu}g$ of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results: COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions: Based upon current observations, Brennan's rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.

Molecular Characterization of a Chinese cabbage cDNA, C-DH, Predominantly Induced by Water-Deficit Stress and Plant Hormone, ABA (수분부족 및 식물호르몬, ABA에 의하여 발현이 유도되는 배추의 C-DH cDNA에 대한 분자적 특성)

  • 정나은;이균오;홍창휘;정배교;박정동;이상열
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 1998
  • A cDNA encoding desiccation-related protein was isolated from a flower bud cDNA library of Chinese cabbage (C-DH) and its nucleotide sequence was characterized. It contains 679 bp nucleotides with 501 bp open reading frame. The amino acid sequence of the putative protein showed the highest amino acid sequence homology (79 % identity) to dehydrin protein in Gossypium hirsutum. Also, the C-DH shares 48-52% amino acid sequence identity with the other typical dehydrin proteins in plant cells. When the amino acid sequence of their proteins were aligned, several peptide motifs were well conserved, of which function has to be solved. Particularly the C-DH contains 15 additional amino acids at its N-terminus. Genomic Southern blot analysis using the coding region of C-DH showed that the C-DH consists of a single copy gene in Chinese cabbage genome. The C-DH mRNA, whose transcript size is 0.7 kb, was expressed with a tissue-specific manner. It was highly expressed in seed, flower buds and low expression as detected in root, stem or leaf tissues of Chinese cabbage. And the transcript level of C-DH was significantly induced by the treatment of plant hormone, abscisic acid and water-deficit conditions.

  • PDF