• Title/Summary/Keyword: Protein A

Search Result 29,963, Processing Time 0.053 seconds

Expression and Characterization of Hepatitis C Virus Core Proteins: Effects of Single Amino Acid Substitution on Protein Conformation and Subcellular Localization

  • Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.281-286
    • /
    • 1998
  • Hepatitis C virus (HCV) core proteins from two different isolates (HCV-1 and HCV-RH) were expressed in Spotioptera Jrugiperda (Sf9) insect cells. The RH core consisted of two major species of proteins (21 kDa and 19 kDa). On the other hand, the HCV-1 core was approximately 16 kDa in a SDS-PAGE gel. Both core proteins were phosphorylated in vivo on serine residues. Furthermore, the RH core but not HCV-1 core formed dimers, indicating that the protein conformation of the core in these two isolates is dfferent from one another. Immunofluorescence studies showed that the RH core was present in the cytoplasm, whereas the HCV-1 core was localized predominantly to the nucleus in recombinant baculovirus-infected insect cells. Since the major difference between the two isolates is the codon 9 of the core protein, a single amino acid substitution appears to play a major role in the protein conformation and these properties may reflect the different biological functions of core proteins in HCV-infected cells.

  • PDF

Proteomic Identification of Proteins Interacting with a Dual Specificity Protein Phosphatase, VHZ

  • Kim, Jae-Hoon;Jeong, Dae-Gwin
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.58-62
    • /
    • 2007
  • Identification of Dual-specificity protein phosphatase (DSP) substrates is essential in revealing physiological roles of DSPs. We isolated VHZ-interacting proteins from extracts of 293T cells overexpressing a VHZ (C95S, D65A) mutant known to be substrate- trapping mutant. Analysis of specific proteins bound to VHZ by 2D gel electrophoresis and mass spectroscopy revealed that these proteins contained Chaperonin containing TCP1, Type II phosphatidylinositol phosphate kinase ${\gamma}$, Intraflagellar transport 80 homolog, and Kinesin superfamily protein 1B. VHZ-interacting proteins showed that VHZ is involved in many important cellular signal pathways such as protein folding, molecular transportation, and tumor suppression.

Characterization of 27K Zein as a Transmembrane Protein

  • Lee, Dong-Hee
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.196-200
    • /
    • 1998
  • Zeins, maize storage proteins, are retained in the endoplasmic reticulum (ER) during the subcellular targeting process without the ER retention signal. Circumstantial data indicate that the 27K zein is an ER transmembrane protein. The potential transmembrane domain may permit the 27K zein to remain in the ER. This study investigated the potential transmembrane feature by employing alkaline extraction, proteinase K digestion, and surface biotinylation on isolated intact protein bodies. These assays consistently support the possibility of the 27K zein as a transmembrane protein. The 27K zein polypeptide was shown to be associated with alkali-stripped membranes. The polypeptide was digested by proteinase K to a smaller fragment. According to surface biotinylation, the 27K zeins was labeled to the exclusion of other classes of zeins. This study, therefore, concludes that the 27K zein has an ER transmembrane domain, which may serve as an anchor for zeins' ER retention.

  • PDF

Purification and Properties of Protein Methylase I from Hog Pancreas (돼지 췌장내 Protein Methylase I의 분리정제 및 성질)

  • 이향우;장만식
    • YAKHAK HOEJI
    • /
    • v.31 no.3
    • /
    • pp.173-181
    • /
    • 1987
  • Protein methylase I has been partially purified from hog pancreas with a 11% yeild. The final preparation is completely free of any other protein-specific methyltransferases and endogenous substrate proteins. The enzyme has an optimum pH of 7.2 and the approximate molecular weight is above 800 thousands dalton. The Km values for S-adenosyl-L-methionine and histone type II-A are 1.32$\times$10$^{-5}$M. The Ki value for S-adenosyl-L-homocysteine is 1.52$\times$10$^{-6}$M. The effect of enyzme concentration on the activity showed a slight sigmoidal curve suggesting the involvement of certain cofactors. Even though the purified enzyme showed two bands on polyacrylamide gel electrophoresis, the enzyme is highly specific for the arginine residues of protein and specifically, highly specific for histone, suggesting histonespecific protein methylase I.

  • PDF

Characteristics of Protein Chromatography by Affinity Membrane Mudule (친화성 막모듈에 의한 단백질 크로마토그래픽 특성)

  • 이광진;염경호
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.125-132
    • /
    • 1998
  • Protein affinity membrane was prepared via the coating of chitosan gel on the porous flat polysulfone membrane surface, followed by the immobilization f the reactive dye (Cibacron Blue 3GA) to the chitonsan gel. The maximum protein binding capacity of affinity membrane was about 70${\mu}g/cm^2$ determined by the batch adsorption experiments of human serum albumin (HSA). Using module of this membrane, the characteristics of protein chromatography were investigated through the experiments of elution and frontal chromatography of HSA. This membrane module promises as a chromatography column, since it represented a lower pressure drop and a greater reproducibility. The protein separation ratio was significantly influenced by the flow rate of mobile phase and the injection quantity of HSA. The dynamic protein binding capacity of module decreased from the equilibrium binding capacity with increasing flow rate and approached the value of 15 - 20 ${\mu}g/cm^2$ for flow rates above 6 mL/min.

  • PDF

Atypical Actions of G Protein-Coupled Receptor Kinases

  • Kurose, Hitoshi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.390-397
    • /
    • 2011
  • G protein-coupled receptor kinases (GRKs) and ${\beta}$-arrestins have been known as regulators of G protein-coupled receptors. However, it has been recently reported that GRKs and ${\beta}$-arrestins mediate receptor-mediated cellular responses in a G proteinin-dependent manner. In this scheme, GRKs work as a mediator or a scaffold protein. Among 7 members of the GRK family (GRK1-GRK7), GRK2 is the most extensively studied in vitro and in vivo. GRK2 is involved in cellular migration, insulin signaling, and cardiovascular disease. GRK6 in concert with ${\beta}$-arrestin 2 mediates chemoattractant-stimulated chemotaxis of T and B lymphocytes. GRK5 shuttles between the cytosol and nucleus, and regulates the activities of transcription factors. GRK3 and GRK4 do not seem to have striking effects on cellular responses other than receptor regulation. GRK1 and GRK7 play specific roles in regulation of rhodopsin function. In this review, these newly discovered functions of GRKs are briefly described.

Effective Expression of Recombinant Baculovirus Vector Systems (재조합 베큘로바이러스벡터의 효과적 발현)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.977-980
    • /
    • 2014
  • A baculovirus vector systems including genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were transfected into human foreskin fibroblast cells and various tissues and investigated gene transfer and expression of these vector systems with control vectors. From the study, these recombinant baculovirus vector systems were more effective and safe than control vector in view of gene transfer and expression.

  • PDF

Protein Evaluation of Dry Roasted Whole Faba Bean (Vicia faba) and Lupin Seeds (Lupinus albus) by the New Dutch Protein Evaluation System: the DVE/OEB System

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.871-880
    • /
    • 1999
  • The effects of dry roasting (110, 130, $150^{\circ}C$ for 15, 30, 45 min) on potential ruminant protein nutritional values in terms of: a), rumen bypass protein (BCP); b), rumen bypass starch (BST); c), fermented organic matter (FOM); d), true absorbed bypass protein (ABCP); e) microbial protein synthesized in the rumen based on available energy (E_MP); f), microbial protein synthesized in the rumen based on available nitrogen (N_MP); g), true protein supplied to the small intestine (TPSI); h), true absorbed rumen synthesized microbial protein (AMP); i), endogenous protein losses (ENDP); j), true digested protein in the small intestine (DVE); k), degraded protein balance (OEB) of whole lupin seeds (WLS) and faba beans (WFB) were evaluated by the new Dutch DV/OEB protein evaluation system. Dry roasting significantly increased BCP, BST, TPSI, ABCP, DVE (p<0.001) and decreased FOM, E_MP, AMP, N_MP and OEB (p<0.001) with increasing temperatures and times except that when temperature was at $110^{\circ}C$. The values of BCP, BST, TPSI, ABCP and DVE at $150^{\circ}C/45min$ for WLS and WFB were increased 2.2, 3.7; -, 2.0; 1.7, 1.7; 2.3, 3.7 and 1.7, 1.7 times and the values of FOM, E_MP, AMP, N_MP and OEB at $150^{\circ}C/45min$ for WLS and WFB were decreased by 15.3, 25.8; 18.1, 25.8; 18.7, 25.8; 54.6, 41.6 and 82.3% 54.7%, respectively, over the raw WLS and WFB. The results indicated that though dry roasting reduced microbial protein synthesis due to reducing FOM, TPSI didn't decrease but highly increased due to increasing BCP more than enough for compensation of the microbial protein decreasing. Therefore the net absorbable DVE in the small intestine was highly increased. The OEB values were significantly reduced for both WLS and WFB but not to the level of negative. It indicated that microbial protein synthesis might not be impaired due to the sufficient N supplied in the rumen, but the high positive OEB values in the most treatments except of $150^{\circ}C$ for 30 and 45 min of WLS (The OEB values: 54.8 and 26.0 g/kg DM) indicated that there were the large amounts of N loss in the rumen. It was concluded that dry roasting at high temperature was effective in shifting protein degradation from rumen to intestines and it increased the DVE values without reaching the negative OEB values. No optimal treatment was found in WLS due to the too high OEB values in all treatments. But dry roasting at $150^{\circ}C$ for 30 and 45 min might be optimal treatments for WLS due to the very lower OEB values.

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

GSnet: An Integrated Tool for Gene Set Analysis and Visualization

  • Choi, Yoon-Jeong;Woo, Hyun-Goo;Yu, Ung-Sik
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.133-136
    • /
    • 2007
  • The Gene Set network viewer (GSnet) visualizes the functional enrichment of a given gene set with a protein interaction network and is implemented as a plug-in for the Cytoscape platform. The functional enrichment of a given gene set is calculated using a hypergeometric test based on the Gene Ontology annotation. The protein interaction network is estimated using public data. Set operations allow a complex protein interaction network to be decomposed into a functionally-enriched module of interest. GSnet provides a new framework for gene set analysis by integrating a priori knowledge of a biological network with functional enrichment analysis.