• Title/Summary/Keyword: Protective systems

Search Result 497, Processing Time 0.023 seconds

Design of a Smart Safety Vest Incorporated With Metal Detector Kits for Enhanced Personal Protection

  • Rajendran, Salini D.;Wahab, Siti N.;Yeap, Swee P.
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.537-542
    • /
    • 2020
  • Background: Personal protective equipment (PPE) has been designed in such a way to reduce accident rates. Unfortunately, existing PPE is rather ineffective as it is not able to provide warning signals when hazard is around. The integration of intelligent systems is envisaged to increase the efficiency of existing PPE. Methods: This project designed a safety vest incorporated with metal detectors which can provide immediate warning to the field workers when there is metal hazard around. This product has greater freedom of design via smart manufacturing as it involves the assembly of few commercially available parts into a single entity. Briefly, the metal detector is a do it yourself (DIY) kit, and the safety vest is purchasable from any local market. The DIY kit was connected to a copper coil and being sewed into the safety vest. Results: The metal detector induces beeping sound when there is metal hazard around. A total of 121 engineering students were introduced to the prototype before being requested to answer a survey associated with the design. Respondents have rated >3.00/5.00 for the design simplicity, ease of usage, and light weight. Meanwhile, respondents suggested that the design should be further improved by increasing the metal detection range. Conclusion: It is envisaged that the introduction of this smart safety vest will allow the workers to carry out their duties securely by reducing the accident rates. Particularly, such design is expected to reduce workplace accident especially during night time at construction sites where the visibility is low.

Case Studies of Firefighter Burns Safety Accident during Fire-fighting Activities (현장 소방활동 중 소방공무원 화상사고 사례 분석 연구)

  • Sin-woong, Choi;So Yun, Lee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.136-147
    • /
    • 2022
  • The purpose of this study is to analyze four cases of firefighter burns in various fire scenes and to find prevention measures to decrease firefighter injuries. Among the analysis reports prepared by the National Fire Research Institute of Korea from 2016 to 2020, four burn-related accidents are summarized and the main causes are conveyed. The four accidents include second-degree burns from using extinguishers during containment of fires; nine firefighters burned due to re-ignition in the LPG car repair shop; two firefighters injured with third-degree burns from using fire extinguishers during life-saving events in residential housing; and injuries from the radiant heat of the tank BLEVE near the factory fire. These cases are comprehensively investigated in their respective scenes and analyzed based on the fire site investigation reports from the fire department and related theoretical explanations of risk for each accident scene. In the third case study, some experimental research is conducted to evaluate the risk involved with the use of safety gloves. This is evaluated by reviewing Fire Tactics and Standard Operational Procedures (SOP) to determine improvements and recommendations for an efficient firefighting response. Results show that the main causes of burn accidents are the insufficient use of personal protective equipment (PPE), such as safety gloves, and the failure to follow firefighting tactics or SOPs. Through the accident investigation and assessment, it is concluded that to reduce the frequency of burn accidents, the performance of firefighting equipment, SOPs, protection tactics, and safety policy systems require improvement.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Synthesis of Evidence to Support EMS Personnel's Mental Health During Disease Outbreaks: A Scoping Review

  • Bronson B. Du;Sara Rezvani;Philip Bigelow;Behdin Nowrouzi-Kia;Veronique M. Boscart;Marcus Yung;Amin Yazdani
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.379-386
    • /
    • 2022
  • Emergency medical services (EMS) personnel are at high risk for adverse mental health outcomes during disease outbreaks. To support the development of evidence-informed mitigation strategies, we conducted a scoping review to identify the extent of research pertaining to EMS personnel's mental health during disease outbreaks and summarized key factors associated with mental health outcomes. We systematically searched three databases for articles containing keywords within three concepts: EMS personnel, disease outbreaks, and mental health. We screened and retained original peer-reviewed articles that discussed, in English, EMS personnel's mental health during disease outbreaks. Where inferential statistics were reported, the associations between individual and work-related factors and mental health outcomes were synthesized. Twenty-five articles were eligible for data extraction. Our findings suggest that many of the contributing factors for adverse mental health outcomes are related to inadequacies in fulfilling EMS personnel's basic safety and informational needs. In preparation for future disease outbreaks, resources should be prioritized toward ensuring adequate provisions of personal protective equipment and infection prevention and control training. This scoping review serves as a launching pad for further research and intervention development.

Protective Effects against Brucella abortus 544 Infection in a Murine Macrophage Cell Line and in a Mouse Model via Treatment with Sirtuin 1 Activators Resveratrol, Piceatannol and Ginsenoside Rg3

  • Alisha Wehdnesday Bernardo Reyes;Heejin Kim;Tran Xuan Ngoc Huy;Trang Thi Nguyen;Wongi Min;Hu Jang Lee;Jin Hur;John Hwa Lee;Suk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.441-448
    • /
    • 2023
  • Brucellosis is a contagious zoonotic disease that infects millions of people annually with hundreds of millions more being exposed. It is caused by Brucella, a highly infectious bacterial species capable of infecting humans with an estimated dose of 10-100 organisms. Sirtuin 1 (SIRT1) has been reported to contribute to prevention of viral diseases as well as a chronic infection caused by Mycobacterium bovis. Here, we investigated the role of SIRT1 in the establishment of Brucella abortus infection in both in vitro and in vivo systems using the reported SIRT1 activators resveratrol (RES), piceatannol (PIC), and ginsenoside Rg3 (Rg3). In RAW264.7 cells, SIRT1 activators did not alter the adherence of Brucella or Salmonella Typhimurium. However, reduced uptake of Brucella was observed in cells treated with PIC and Rg3, and survival of Brucella within the cells was only observed to decrease in cells that were treated with Rg3, while PIC treatment reduced the intracellular survival of Salmonella. SIRT1 treatment in mice via oral route resulted in augmented Brucella resistance for PIC and Rg3, but not RES. PIC treatment favors Th2 immune response despite reduced serum pro-inflammatory cytokine production, while Rg3-treated mice displayed high IL-12 and IFN-γ serum production. Overall, our findings encourage further investigation into the complete mechanisms of action of the different SIRT1 activators used as well as their potential benefit as an effective alternative approach against intracellular and extracellular pathogens.

Design and Implementation of a Sensor Technology-based Safety Shoe Recognition System to Prevent Safety Accidents (안전사고 예방을 위한 센서 기술 기반 안전화 인식 시스템 설계 및 구현)

  • Kyoung-Jin Oh;Jeong-Min Park;Kwang-Jin, Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.163-170
    • /
    • 2023
  • With the introduction of the law regarding severe penalties for major accidents, employers, management executives, and corporations have significantly increased the number of safety managers and invested extensively in acquiring ISO certifications to prevent accidents in industrial sites. Moreover, the implementation of the Smart Safety Management System (SSMS) has facilitated the management of personnel and safety equipment. While IoT-based management systems have been applied to safety gear such as helmets, safety harnesses, and protective clothing, the responsibility for safety shoes still primarily lies with on-site managers and individuals, leaving a vulnerability to accidents. In this study, we aim to implement a Raspberry Pi-based sensor device to proactively detect workers' safety shoe usage upon entering the site. The goal is to confirm the usage of safety shoes and prevent accidents that may occur due to non-compliance with safety shoes regulations.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.

Effects of Solvent Extracts from Dried Beet (Beta vulgaris) on Antioxidant in Cell Systems and Growth of Human Cancer Cell Lines (건조 비트(Beta vulgaris) 추출물의 Cell System에서 항산화 및 항암 효과)

  • Jang, Joo-Ri;Kim, Kyung-Kun;Lim, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.832-838
    • /
    • 2009
  • The inhibitory effects of solvent extracts from dried beet (Beta vulgaris) on $H_2O_2$-induced oxidative stress in cell systems and on the growth of cancer cell lines (HT-29 human colon cancer and AGS human gastric adenocarcinoma cells) were investigated. Inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts on the growth of HT-29 and AGS cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was more significant on the growth of AGS cells and A+M extracts had a higher inhibitory effect compared to MeOH extracts. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of both cancer cells (p<0.05). Among fractions, hexane and 85% aq. methanol fractions showed higher inhibitory effects. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, DCHF-DA (dichlorodihydrofluorescin diacetate) assay was conducted. The A+M and MeOH extracts of dried beet appeared to significantly reduce the levels of intracellular (ROS) with dose responses. Among the fractions, 85% methanol fractions showed a higher protective effect on production of lipid peroxides. These results indicate that the intake of dried beet may improve oxidative stress in cell and reduce cancer risk.