• 제목/요약/키워드: Protective relaying

검색결과 110건 처리시간 0.027초

도시철도 직류 비접지 급전계통에서의 선택 지락보호시스템의 성능평가 (An Evaluation of Selective Grounding Fault Protective Relaying Technique Performance on the Ungrounded DC Traction Power Supply System)

  • 정호성;김주욱;신승권;김형철;안태풍;윤준석
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1964-1969
    • /
    • 2012
  • This paper presents to verify the selective grounding fault protective relaying technique for the ungrounded DC traction power supply system. This system selectively blocks fault section when grounding fault occurred. In order to perform this verification, field test facilities have been installed on Oesam substation and Worldcup-Stadium substation, and field test process has been suggested. Also, selective grounding fault protective relaying components and rail voltage reduction device have been tested with the various trial examinations. In order to compare and evaluate performance of the selective grounding fault protective relaying function, field test system was modeled and the system fault simulation results were compared and evaluated with the field test result. Performance of selective grounding fault protective relaying function was evaluated with the above-mentioned process, and the fact that the system recognizes fault section irrespective of insulation between rail and ground and fault resistance from grounding fault.

전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘 (Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer)

  • 박철원;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

전압-전류 추이와 자속-차전류 기울기 특성을 이용한 변압기 보호계전기법의 성능 개선 (Performance Improvement of Protective Relaying for Large Transformer by Using Voltage-Current Trend and Flux-Differential Current Slope Characteristic)

  • 박철원;박재세;정연만;하경재;신명철
    • 전기학회논문지P
    • /
    • 제53권2호
    • /
    • pp.43-50
    • /
    • 2004
  • Percentage differential characteristic relaying(PDR) has been recognized as the principal basis for power transformer protection. Second harmonic restraint PDR has been widely used for magnetizing inrush in practice. Nowadays, relaying signals can contain 2nd harmonic component to a large extent even in a normal state, and 2nd harmonic ratio indicates a tendency of relative reduction because of the advancement of material. Further, as the power system voltage becomes higher and more underground cables are used, larger 2nd harmonic component in the differential current under internal fault is observed. And then, conventional 2nd harmonic restraint PDR exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for performance improvement of conventional protective relaying. This paper proposes an advanced protective relaying algorithm by using voltage-current trend and flux-differential current slope characteristic. To evaluate the performance of the proposed algorithm, we have made comparative studies of PDR, fuzzy relaying and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP, and data collection is made through simulation of various internal faults and inrush. As the results of test, the new proposed algorithm was proven to be faster and more reliable.

풍력발전단지 연계 전용선로 보호계전방식의 향상에 대한 연구 (A Study on the Improved Protective Relaying Algorithm Applied in the Linked System Interconnecting Wind Farm with the Utilities)

  • 장성일;김광호;권혁완;김대영;권혁진
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권12호
    • /
    • pp.675-683
    • /
    • 2003
  • This paper describes the correction strategy of an overcurrent relay applied in the linked line for interconnecting wind farm with utility power networks in order to improve the capability of a fault detection. The fault current measured in a relaying point might vary according to the fault conditions. Generally, the current of the line to line fault or the line to ground fault in the linked line is much higher than the set value of protective relay due to the large fault level. However, when the high impedance fault occurs in the linked line, we can't detect it by conventional set value because its fault level may be lower than the generating capacity of wind farm. And, the protective relay with conventional set value may generate a trip signal for the insertion of wind turbine generators due to the large transient characteristics. In order to solve above problems and improve protective relaying algorithms applied in the linked line, we propose a new correction strategy of the protective relay in the linked line. The presented method can detect the high impedance fault which can't be detected by conventional relay set value and may prevent the mis-operation of protective relay caused by the insertion of wind farm.

웨이블렛 변환을 이용한 변압기 보호계전 알고리즘 개발 (The Development of Protective Relaying Algorithm for Transformer Based on Wavelet Transform)

  • 홍동석;정채균;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.485-487
    • /
    • 2001
  • Current differential protective relaying with harmonic restraint module is, in general, used to protect transformer. But It is hard to distinguish inrush and internal winding fault with differential current protective relaying. This paper presents the new protective algorithm for transformers using 3-phase differential current's d1 coefficient values in wavelet transform. Various states of transformer was simulated using EMTP. Internal winding fault and inrush are classified within shorter time using the proposed algorithm.

  • PDF

Fuzzy Logic Based Relaying Using Flux-differential Current Derivative Cure for Power Transformer Protection

  • 권명현;박철원;서희석;이복구;신명철
    • 한국지능시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.72-82
    • /
    • 1998
  • Power transformer protective relay should block the tripping during magnetizing imrush and rapidly operate the tripping during internal faults. But traditional approaches maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmounic component. To enhance the fault detection sensitivities of conventional technuques, flux-differential current derivative curve by fuzzy theory approaches is used. This paper deals with fuzzy logic based protective relaying for power transformer. The proposed fuzzy based relaying algorithm consisits of flux-differential current derivative curve, harmonics restraint, and precentage differential characteristic curv. The proposed relaying was tested with relaying signals obtained from Salford EMTP simulation package and showed a fast and accurate trip operation.

  • PDF

비접지 DC 급전계통에서 전류형 지락보호계전 방법 (Ground fault protective relaying schemes for DC traction power supply system)

  • 정상기;정락교;이성혁;김연수;조홍식
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

Development of an Adaptive Overcurrent Relaying Algorithm for Distribution Networks Embedding a Large Scaled Wind Farm

  • Jang, Sung-Il;Kim, Ji-Won;Kim, Kwang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.198-205
    • /
    • 2003
  • This paper proposes the adaptive relaying of protective devices applied in the neighboring distribution feeders for reliable and efficient operations of a wind farm interconnected with distribution networks by dedicated lines. A wind farm connected to an electric power network is one of the greatest alternative energy sources. However, the wind turbine generators are influenced by abnormal grid conditions such as disturbances occurring in the neighboring distribution feeders as well as the dedicated power. Particularly, in cases of a fault happening in the neighboring distribution feeders, a wind farm might be accelerated until protective devices clear the fault. Therefore, the delayed operation time of protective devices for satisfying the coordination might overly expose the interconnected wind turbine generators to the fault and cause damage to them. This paper describes the proper delayed operation time of protective relay satisfying the coordination of the distribution networks as well as reducing damage on the interconnected wind farm. The simulation results for the Hoenggye substation model composed of five feeders and one dedicated line using PSCAD/EMTDC showed that the proper delayed time of protective devices reflecting the fault condition and the power output of the wind farm could improve the operational reliability, efficiency, and stability of the wind farm.

보호계전기 동작실태 분석 (Analysis on operating trends of Protective relay)

  • 장성익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.188-190
    • /
    • 2000
  • Protective Relays are vital components of power systems. The role of the protective relaying device is more important than ever. Therefore, We have investigated the operating trends of protective relay from 1991 to 1999. we anticipate that reliability in the power systems increases by improving design, manufacture, construction technology and maintenance method of the protective relay.

  • PDF

웨이브렛 변환기반 뉴로-퍼지를 이용한 변압기 보호계전 알고리즘 (Transformer Protective Relaying Algorithm Using Neuro-Fuzzy based on Wavelet Transform)

  • 이명윤;이종범;홍동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.607-609
    • /
    • 2004
  • A breakdown occurred in power transformer causes interruption of power transmission. Protective relay should be installed in transformer to detect such a fault. Protective relaying algorithm for transformer must be included a function to discriminate between winding fault and inrushing state. Recently, current differential relay is widely used to protect power transformer. However if inrush occurs in transformer, relay can be tripped by judging as internal fault. New algorithms are required in order to such problem. This study proposes a new protective relaying algorithm using Neuro-Fuzzy inference and wavelet. A variety of transformer transient states are simulated by BCTRAN and HYSDT in EMTP. D1 coefficients of differential current are obtained by wavelet transform. D1 coefficients and RMS of 3-phase primary voltage are used to make a target data and are trained by Nwo-Fuzzy algorithm which distinguishes correctly whether internal fault occurs or not within 1/2 after fault detection. It is evaluated that the results obtained by simulations can effectively protect a transformer by contact discriminating between winding fault and inrushing state.

  • PDF