• Title/Summary/Keyword: Protective materials

Search Result 795, Processing Time 0.026 seconds

Survey Study of Current Status of and Need for Mental Health Education Enhancing Protective Factors in the Elementary Schools (보건교사와 초등학교 고학년 학생을 대상으로 한 정신건강교육 실태 및 보호요인 강화 교육 요구도 조사)

  • Lee, Ji-Hyun;Park, Hyeoun-Ae
    • Research in Community and Public Health Nursing
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2016
  • Purpose: The purpose of this study was to survey the current status of mental health education and need for mental health education enhancing protective factors in the elementary schools. Methods: We surveyed 10 school health teachers and 328 fifth- and sixth-grade students using 19- and 20-item questionnaires, respectively. Results: All of the teachers and 65.2% of the students replied that they were either teaching or being taught mental health in school. Topics covered suicide, depression, school violence, and Internet addiction. All of the teachers and 84.1% of the students expressed the need for mental health education enhancing protective factors in school. Both groups replied that two sessions are enough. The teachers preferred role play and discussion as teaching methods, and audiovisual materials and computer as instructional media. The students preferred lecture and role play as teaching methods, and audiovisual materials and smartphone as instructional media. Both groups ranked self-esteem, parent-child relationship, peer relationship, and emotional regulation as the most important topics to be covered in the education. Conclusion: There is a high demand for mental health education enhancing protective factors. Therefore, it is recommended to develop educational programs enhancing protective factors by enabling formal and informal learning using smartphone.

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

Evaluation of Protective Clothing Using 3D Virtual Fitting (3차원 가상착의를 활용한 방호복 평가)

  • Okkyung Lee;Heeran Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.107-120
    • /
    • 2023
  • The purpose of this study was to analyze the patterns of D level protective clothing, improve their ease of movement by modifying the patterns, and validate the effectiveness of the improvements through 3D virtual fitting and subjective wearing evaluations. Based on previous studies that identified numerous complaints, the patterns of the neck, armpit, and waist areas were modified, resulting in the development of new patterns. To compare and analyze the improved protective clothing with the basic protective clothing, stress and strain were examined after 3D virtual fitting. Additionally, to assess the clothing's allowance, the overall distance between the avatar and the protective clothing, as well as the sectional circumference length and distance of each avatar body part, were measured. Furthermore, the improved protective clothing was manufactured, and a subjective wearing evaluation was conducted with ten males in their twenties as participants. The results showed that the improved protective clothing had evenly distributed stress, larger sectional circumference, and lower average cavity distance. The subjective wearing evaluation also revealed that the suit with improved patterns exhibited superior size suitability, reduced pulling sensation in different body parts, and increased ease of movement. In conclusion, this study confirmed that even minimal pattern modifications can enhance the functionality of protective clothing, alleviating discomfort for wearers.

Effects of surface geometry of MgO protective layer for AC-PDPs

  • Park, Sun-Young;Moon, Sung-Hwan;Heo, Tae-Wook;Kim, Jae-Hyuk;Lee, Joo-Hwi;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1395-1398
    • /
    • 2007
  • MgO thin films were deposited by e-beam evaporator using the 2-step method for alternate current plasma display panels (AC-PDPs). Glancing angle deposition (GLAD) method was employed to produce various surface geometry of the thin film; the bottom layer was deposited on a substrate by normal e-beam evaporation method and the top layer was deposited on bottom layer with $85^{\circ}$ by GLAD method. Results show that firing and sustain voltages improved as the sharpness of surface and isolated columnar structures increases, respectively.

  • PDF

Effect of Fire Fighters' Turnout Gear Materials Air Gap on Thermal Protective Performance (소방보호복 소재의 공기간극이 열보호 성능에 미치는 영향)

  • Lee, Jun-Kyoung;Kwon, Jung-Suk
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure adequate protection from the risk of burns, fire fighter's turnout has a composite of more than three components and air gaps between layers of materials. During the flame exposure, radiation and convection heat transfer occurs in the air gap, thus the air gap acts as a thermal resistance with non-linear characteristics. Therefore, in this study, the experiments were performed to identify the effect of various air gap width (0~7 mm) on the thermal protective performance of fire fighter's clothing. The temperatures on each layer and RPP (Radiant Protective Performance, the most effective index representing the thermal protective performance) were measured with various incident radiant heat fluxes. The temperature at the rear surface of the garment decreased and RPP increased with increasing air gap width because the thermal resistance increased. Especially, it could be found that RPP value and air gap width has almost linear relation for the constant incident heat flux conditions. Thus relatively simple RPP predictive equation was suggested for various incident heat flux and air gap conditions.

Deposition of Protective Layer on Stealth Sheet and Evaluation of the Protected Sheet's Mechanical Performance (스텔스 소자의 보호층 도포 및 기계적 성능 평가 연구)

  • Sang Yeon So;Jae Won Hahn
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.185-191
    • /
    • 2023
  • We report the results of evaluating the hardness, flexibility, and adhesion between the protective layer and the stealth sheet after applying a protective layer to improve the practicality of the flexible stealth sheet. The result of the ISO 15184 pencil hardness test showed that the hardness increased from HB to 3H by three grades when a protective layer was applied. The flexibility evaluation was conducted by bending the material against cylinders of certain diameters and observing whether cracks occurred according to the ASTM D522 test method. The result showed that the minimum diameter was 0.125 inches. The adhesion was evaluated by using the ASTM D3359 test method, attaching and peeling off an adhesive strip to the protective layer and determining the proportion of the protective layer peeling off. The result was 5B, which is better than the military adhesion limit of 4B.

Development of New Hybrid Technique of Protective Finishing for the Prevention of Deterioration in Concrete Structures (콘크리트 구조물의 열화방지를 위한 보호마감 복합화 신기술의 개발)

  • 하기주;최민권;신종학;김기태;홍호용;이영범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.739-744
    • /
    • 2001
  • In this study, experimental research was carried out to develop protective finishing, coating materials and new hybrid technique for deteriorating prevention and high durability in concrete structures. It had sufficiently recommended performance for the protective finishing method of concrete structures through testings. This is more progressive double membrane method than single membrane type designed by conventional method. It was found that this hybrid construction method had very excellent performance to improve the durability of existing concrete structures and attain the beauty of concrete structures.

  • PDF

Characteristics of an MgO Green Sheet as a Protective Layer of AC-PDP

  • Park, Deok-Hai;Park, Min-Soo;Kim, Bo-Hyun;Ryu, Byung-Gil;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.387-390
    • /
    • 2006
  • The protective layer of AC-PDP was fabricated by laminating an MgO green sheet. The MgO green sheet was made by coating MgO solution composed of solvent, dispersant, binder, and MgO nano-powder. The MgO solution was coated by the die casting method on the base film. We fabricated three kinds of MgO green sheets of which thicknesses were 20, 28, and $40\;{\mu}m$, respectively. The MgO nano-powder showed lower CL intensity and ${\gamma}i$ than the e-beam MgO. The MgO green sheet applied panels showed low luminance and current density. The efficiency was almost same as the conventional e-beam MgO panel.

  • PDF

Contribution of Water Chemistry in Initiation of Some Accelerated Corrosion Processes in CANDU-PHWR Primary System

  • Pirvan, Ioana;Radulescu, Maria;Fulger, Manuela
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • By operation in aqueous environment at high temperature and pressure, the structural materials from Primary Heat Transport System (PHTS) cover with protective oxide films, which maintain the corrosion rate in admissible limits. A lot of potential factors exist, which conduct to degradation of the protective films and consequently to intensification of the corrosion processes. The existing experience of different nuclear reactors shows that the water chemistry has an important role in integrity maintaining of the protective oxide films. To investigate the influence of water chemistry (pH, O2 dissolved, $Cl^-$, $F^-$) on corrosion of some structural materials (carbon and martensitic steel, Zr and Ni alloys) and to establish the maximum permissible values, corrosion experiments by static autoclaving and electrochemical methods were performed. The experimental results allowed us to establish the contribution of the water chemistry in initiation and evolution of some accelerated corrosion processes.