• 제목/요약/키워드: Protective immunity

검색결과 163건 처리시간 0.025초

재조합 파스튜렐라 외막 단백질 H의 면역원성 검정 (Immunogenicity of Recombinant Outer Membrane Protein H from Pasteurella multocida)

  • 이정민
    • 한국미생물·생명공학회지
    • /
    • 제34권3호
    • /
    • pp.273-277
    • /
    • 2006
  • 본 연구에서는 병원성 Pasteurella multocida D:4 외막 단백질 H의 방어적 면역성과 백신으로서의 가능성을 검정하고자, 외막 단백질 H 유전자를 대장균에서 발현, Trx와 융합된 형태의 재조합 외막 단백질 H를 분리하여 면역화와 백신 실험에 항원으로 사용하였다. 면역 실험에서 재조합 외막 단백질 H는 높은 역가의 항체를 유도하였으며, 불활화한 사균 백신과 유사한 수준의 백신 효과를 나타내었다.

생혈단의 골수부전 치료효과에 대한 실험적 연구 (The Effects of Saenghyuldan(shengxiedan) on Bone Marrow Failure)

  • 이연월;손창규;조종관
    • 대한한의학회지
    • /
    • 제22권1호
    • /
    • pp.33-45
    • /
    • 2001
  • Objectives: This experimental study was carried out to prove the effect of Saenghyuldan(SHD; shengxiedan) on bone marrow failure induced by cyclophosphamide(CY) and irradiation in mice. Methods: The following were performed; immunopathology, histopathlogical findings of bone marrow and in the smear of myelocyte. hematopoietic cytokine(IL-3, GM-CSF, TPO), hematopoietic stem cell colony assay, humoral immunity(LPS mitogen response), cell-mediated immunity (Con A mitogen response) and nonspecific immunity(macrophage adherence & phagocytosis) in vitro or vivo. Results: SHD showed a protective effect on bone marrow failure induced by cyclophosphamide(CY) and irradiation in mice. SHD increased lymphoproliferative responses to LPS and Con A, and activated macrophage adherence and phagocytosis to SRBC. Conclusions: We expect that SHD can be used to treat bone marrow failure and immune suppression induced by the chemotherapy or radiation.

  • PDF

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee;Chang, Jun
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.261-268
    • /
    • 2012
  • Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

Improved immune responses and safety of foot-and-mouth disease vaccine containing immunostimulating components in pigs

  • Choi, Joo-Hyung;You, Su-Hwa;Ko, Mi-Kyeong;Jo, Hye Eun;Shin, Sung Ho;Jo, Hyundong;Lee, Min Ja;Kim, Su-Mi;Kim, Byounghan;Lee, Jong-Soo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • 제21권5호
    • /
    • pp.74.1-74.13
    • /
    • 2020
  • Background: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. Objectives: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. Methods: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. Results: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. Conclusions: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.

Protective Immunity Induced by Systemic and Mucosal Delivery of DNA Vaccine Expressing Glycoprotein B of Pseudorabies Virus

  • Yoon, Hyun-A;Han, Young-Woo;Aleyas, Abi George;George, June Abi;Kim, Seon-Ju;Kim, Hye-Kyung;Song, Hee-Jong;Cho, Jeong-Gon;Eo, Seong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.591-599
    • /
    • 2008
  • A murine model immunized by systemic and mucosal delivery of plasmid DNA vaccine expressing glycoprotein B (pCIgB) of pseudorabies virus (PrV) was used to evaluate both the nature of the induced immunity and protection against a virulent virus. With regard to systemic delivery, the intramuscular (i.m.) immunization with pCIgB induced strong PrV-specific IgG responses in serum but was inefficient in generating a mucosal IgA response. Mucosal delivery through intranasal (i.n.) immunization of pCIgB induced both systemic and mucosal immunity at the distal mucosal site. However, the levels of systemic immunity induced by i.n. immunization were less than those induced by i.m. immunization. Moreover, i.n. genetic transfer of pCIgB appeared to induce Th2-biased immunity compared with systemic delivery, as judged by the ratio of PrV-specific IgG isotypes and Th1- and Th2-type cytokines produced by stimulated T cells. Moreover, the immunity induced by i.n. immunization did not provide effective protection against i.n. challenge of a virulent PrV strain, whereas i.m. immunization produced resistance to viral infection. Therefore, although i.n. immunization was a useful route for inducing mucosal immunity at the virus entry site, i.n. immunization did not provide effective protection against the lethal infection of PrV.

Intranasal Vaccination with Outer-Membrane Protein of Orientia tsutsugamushi induces Protective Immunity Against Scrub Typhus

  • Sung-Moo Park;Min Jeong Gu;Young-Jun Ju;In Su Cheon;Kyu-Jam Hwang;Byoungchul Gill;Byoung-Shik Shim;Hang-Jin Jeong;Young Min Son;Sangho Choi;Woonhee Jeung;Seung Hyun Han;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.14.1-14.17
    • /
    • 2021
  • Scrub typhus develops after the individual is bitten by a trombiculid mite infected with Orientia tsutsugamushi. Since it has been reported that pneumonia is frequently observed in patients with scrub typhus, we investigated whether intranasal (i.n.) vaccination with the outer membrane protein of O. tsutsugamushi (OMPOT) would induce a protective immunity against O. tsutsugamushi infection. It was particular interest that when mice were infected with O. tsutsugamushi, the bacteria disseminated into the lungs, causing pneumonia. The i.n. vaccination with OMPOT induced IgG responses in serum and bronchoalveolar lavage (BAL) fluid. The anti-O. tsutsugamushi IgA Abs in BAL fluid after the vaccination showed a high correlation of the protection against O. tsutsugamushi. The vaccination induced strong Ag-specific Th1 and Th17 responses in the both spleen and lungs. In conclusion, the current study demonstrated that i.n. vaccination with OMPOT elicited protective immunity against scrub typhus in mouse with O. tsutsugamushi infection causing subsequent pneumonia.

A Novel Recombinant BCG Vaccine Encoding Eimeria tenella Rhomboid and Chicken IL-2 Induces Protective Immunity Against Coccidiosis

  • Wang, Qiuyue;Chen, Lifeng;Li, Jianhua;Zheng, Jun;Cai, Ning;Gong, Pengtao;Li, Shuhong;Li, He;Zhang, Xichen
    • Parasites, Hosts and Diseases
    • /
    • 제52권3호
    • /
    • pp.251-256
    • /
    • 2014
  • A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased $CD4^+$ and $CD8^+$ cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.

파스튜렐라(A : 3) 균주의 재조합 외막단백질 H에 의한 가금 콜레라 감염 생쥐의 면역성 검정 (Protective immunity induced by recombinant outer membrane protein H of pasteurella multocida (A:3) of fowl cholera in mice)

  • 김영환;양주성;권무식
    • 대한수의학회지
    • /
    • 제46권2호
    • /
    • pp.127-133
    • /
    • 2006
  • Pasteurella multocida is a terrible veterinary pathogen that causes widespread infections in husbandry. To induce homologous and/or heterologous immunity against the infections, outer membrane protein Hs (OmpH) in the envelope of different strains of P. multocida are thought to be attractive vaccine candidates. Previously we cloned and characterized a gene for OmpH from pathogenic P. multocida (A : 3) (In Press, Korean J. Microbiol. Biotechnol. 2005, 33, December). The gene is composed of 1,047 nucleotides (nt) coding 348 amino acids (aa) with signal peptide of 20 aa. The truncated ompH, a gene without nt coding for the signal peptide, was generated using pRSET A to name "pRSET A/OmpH-F2". This truncated ompH was well expressed in Escherichia coli BL21 (DE3). Truncated OmpH was purified for induction of immunity against live pathogen of fowl cholera (P. multocida A : 3) in mice. Some $50{\mu}g$ of the purified polypeptide was intraperitoneally injected into mice two times with 10 day interval. Lethal dose ($25{\mu}l$) of live P. multocida A : 3 was determined by directly injecting the pathogen into wild mice (n = 25). To demonstrate the vaccine candidate of the truncated OmpH, the live pathogen ($25{\mu}l$) was challenged with the OmpH-immunized mouse group as well as positive & negative controls (n = 80). The results show that the truncated OmpH can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (A : 3).