• Title/Summary/Keyword: Protection against infection

Search Result 195, Processing Time 0.028 seconds

Mucosal immunity against parasitic gastrointestinal nematodes

  • Onah, Denis-Nnabuike;Nawa, Yukifumi
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.4
    • /
    • pp.209-236
    • /
    • 2000
  • The last two decades witnessed significant advances in the efforts of immune-parasitologists to elucidate the nature and role of the host mucosal defence mechanisms against intestinal nematode parasites. Aided by recent advances in basic immunology and biotechnology with the concomitant development of well defined laboratory models of infection, immunoparasitologists have more precisely analyzed and defined the different immune effector mechanisms during the infection; resulting in great improvement in our current knowledge and understanding of protective immunity against gastrointestinal (GI) nematode parasites. Much of this current understanding comes from experimental studies in laboratory rodents, which have been used as models of livestock and human GI nematode infections. These rodent studies, which have concentrated on Heligmosomoides polygyrus, Nippostrongylus brasiliensis, Strongyloides ratti/5. venezuelensis. Trichinella spiralis and trichuris muris infections in mice and rats, have helped in defining the types of T cell responses that regulate effector mechanisms and the effector mechanisms responsible for worm expulsion. In addition, these studies bear indications that traditionally accepted mechanisms of resistance such as eosinophilia and IgE responses may not play as important roles in protection as were previously conceived. In this review, we shall, from these rodent studies, attempt an overview of the mucosal and other effector responses against intestinal nematode parasites beginning with the indices of immune protection as a model of the protective immune responses that may occur in animals and man.

  • PDF

Protection of Infection and Eradication Activity of Culture Product by Pediococcus pentosaceus CBT SL4 Showing Antimicrobial Activity against Helicobacter pylori (Helicobacter pylori에 대한 항균활성을 나타내는 Pediococcus pentosaceus CBT SL4 배양물의 감염방어 및 제균활성)

  • Hong, Un-Pyo;Chung, Myung-June;Kim, Soo-Dong;Oh, Eun-Taex;So, Jae-Seong;Chung, Chung-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.779-783
    • /
    • 2004
  • New food ingredient was developed to eradicate and protect against re-infection of Helicobacter pylori in fermentation broth of lactic acid bacteria (LAB) showing antimicrobial activity against pathogenic microorganisms such as H. pylori and Listeria monocytogenes. LAB strain CBT SL4 was identified as Pediococcus pentosaceus by 16S rDNA sequencing and its culture broth showed antimicrobial activity of 800 AU/mL against H. pylori in optimized fermentation process. Using thin layer concentration system and spray-typed fluid bed drier system, concentrated powder product showing activity of 12,800 AU/g was harvested. Product showed eradication and protection activities against H. pylori infection on feeding test (50 AU/day) using Mongolian gerbil infection model. After 4 weeks therapy of 8,000 AU/day, ${\Delta}13CO_2$ level (DOB30) decreased about 40% in urea breath test on patient with H. pylori infection. Result show concentrated culture product of P. pentosaceus CBT SL4 has eradicating and protecting activities against H. pylori infection and can be used as food-active ingredient for prevention of gastric and duodenum ulcer caused by H. pylori.

Protection against spring viremia carp virus (SVCV) by immunization with chimeric snakehead rhabdovirus expressing SVCV G protein

  • Mariem Bessaid;Kyung Min Lee;Jae Young Kim;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Spring viremia of carp virus (SVCV) poses a significant threat to numerous cyprinid fish species, particularly the common carp (Cyprinus carpio), often resulting in substantial mortalities. This study explores the potential use of a chimeric recombinant snakehead rhabdovirus carrying the SVCV G gene (rSHRV-Gsvcv) as a live vaccine against SVCV infection. Through virulence testing in zebrafish at different temperatures (15 ℃ and 20 ℃), no mortality was observed in groups infected with either rSHRV-wild or chimeric rSHRV-Gsvcv at both temperatures, whereas 100% mortality occurred in fish infected with wild-type SVCV. Subsequently, as no mortality was observed by rSHRV-Gsvcv, three independent experiments were conducted to determine the possible usage of chimeric rSHRV-Gsvcv as a vaccine candidate against SVCV infection. Fish were immunized with either rSHRV-Gsvcv or rSHRV-wild, and their survival rates against the SVCV challenge were compared with a control group injected with buffer alone at four weeks post-immunization. The results showed that chimeric rSHRV-Gsvcv induced significantly higher fish survival rates compared to rSHRV-wild and the control groups. These findings suggest that genetically engineered chimeric rSHRV-Gsvcv holds the potential for a prophylactic measure to protect fish against SVCV infection.

The Route of Leishmania tropica Infection Determines Disease Outcome and Protection against Leishmania major in BALB/c Mice

  • Mahmoudzadeh-Niknam, Hamid;Khalili, Ghader;Abrishami, Firoozeh;Najafy, Ali;Khaze, Vahid
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • Leishmania tropica is one of the causative agents of leishmaniasis in humans. Routes of infection have been reported to be an important variable for some species of Leishmania parasites. The role of this variable is not clear for L. tropica infection. The aim of this study was to explore the effects of route of L. tropica infection on the disease outcome and immunologic parameters in BALB/c mice. Two routes were used; subcutaneous in the footpad and intradermal in the ear. Mice were challenged by Leishmani major, after establishment of the L. tropica infection, to evaluate the level of protective immunity. Immune responses were assayed at week 1 and week 4 after challenge. The subcutaneous route in the footpad in comparison to the intradermal route in the ear induced significantly more protective immunity against L. major challenge, including higher delayed-type hypersensitivity responses, more rapid lesion resolution, lower parasite loads, and lower levels of IL-10. Our data showed that the route of infection in BALB/c model of L. tropica infection is an important variable and should be considered in developing an appropriate experimental model for L. tropica infections.

Comparative Activities of Novel $\beta$-Lactamase Inhibitors, 6-Exomethylene Penamsulfones (CH1240, CH2140) in Experimental Mouse Infection Model

  • Park, Kye-Whan;Yim, Chul-Bu;Kim, Ki-Ho
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.527-530
    • /
    • 1998
  • The antibacterial activity of novel ${\beta}$-lactamase inhibitors, 6-exomethylene penamsulfones (CH1240, CH2140), has been compared in vivo with that of sulbactam and clavulanic acid against b-lactamase producing strains. In vivo microbiological assessment was used as experimental mouse infection model by gram negative strains. Against Pseudomonas aeruginosa F0013, cefoperazone/CH 1240 was slightly less active than sulbactam. ampicillin/CH 2140 was less effective than sulbactam against escheriachia coli 3457. Especially against Citrobacter diversus 2046E, amoxicillin/CH 2140 was the most potent and amoxicillin/CH 1240 was slightly more active than clavulanic acid. consequently the difference in efficacy between the drug combinations appers to be related to the degree of protection afforded the animals by the b-lactamasse inhibitors. CH1240 and CH2140 are promising new agents and should undergo further investigations.

  • PDF

Role of Surface Protective Antigen A in the Pathogenesis of Erysipelothrix rhusiopathiae Strain C43065

  • Borrathybay, Entomack;Gong, Feng-juan;Zhang, Lei;Nazierbieke, Wulumuhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.206-216
    • /
    • 2015
  • To clarify the role of surface protective antigen A (SpaA) in the pathogenesis of Erysipelothrix rhusiopathiae C43065 (serotype 2), the spaA deletion mutant of E. rhusiopathiae ${\Delta}spaA$ was constructed by homologous recombination. The virulence of the ${\Delta}spaA$ mutant decreased more than 76-fold compared with that of the wild-type strain C43065 in mice. The mutant strain was sensitive to the bactericidal action of swine serum, whereas the wild-type strain was resistant. The adhesion of wild-type strain to MEF cells was inhibited significantly by treatment with rabbit antiserum against recombinant SpaA (rSpaA) as compared with the treatment with normal rabbit serum, but the mutant strain was not affected. The mutant strain was readily taken up by mouse peritoneal macrophages in the normal rabbit serum, whereas the wild-type strain was resistant. Whereas the rabbit antiserum against rSpaA promoted the phagocytosis of wild-type strain by macrophages, the mutant strain was not affected. In addition, mice vaccinated with the formalin-killed mutant strain were provided 40% protection against challenge by the homologous virulent strain as compared with those with wild-type strain, NaOH-extracted antigen, or rSpaA, which provided more than 80% protection against the same infection. These suggested that SpaA has an important role in the pathogenesis of E. rhusiopathiae infection and could be a target for vaccination against swine erysipelas.

Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast

  • Sha, Yuexia;Zeng, Qingchao;Sui, Shuting
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. The aim of this study was to screen bacterial isolates to efficiently prevent the occurrence of rice blast. A total of 232 bacterial isolates were extracted from nonrhizospheric rice soil and were screened for antifungal activity against M. oryzae using a leaf segment assay. Strains S170 and S9 showed significant antagonistic activity against M. oryzae in vitro and in leaf disk assays, and controlled M. oryzae infection under greenhouse conditions. The results showed that strains S170 and S9 could effectively control rice leaf blast and panicle neck blast after five spray treatments in field. This suggested that the bacterial strains S170 and S9 were valuable and promising for the biocontrol of rice disease caused by M. oryzae. Based on 16S rDNA, and gyrA and gyrB gene sequence analyses, S170 and S9 were identified as Bacillus amyloliquefaciens and B. pumilus, respectively. The research also demonstrated that B. amyloliquefaciens S170 and B. pumilus S9 could colonize rice plants to prevent pathogenic infection and evidently suppressed plant disease caused by 11 other plant pathogenic fungi. This is the first study to demonstrate that B. amyloliquefaciens and B. pumilus isolated from nonrhizospheric rice soil are capable of recolonizing internal rice stem tissues.

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.

Pine Needle Extract Applicable to Topical Treatment for the Prevention of Human Papillomavirus Infection

  • Lee, Hee-Jung;Park, Mina;Choi, HeeJae;Nowakowska, Aleksandra;Moon, Chiung;Kwak, Jong Hwan;Kim, Young Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.137-143
    • /
    • 2021
  • Most cervical cancers are associated with high-risk human papillomavirus (HPV) infection. Currently, cervical cancer treatment entails surgical removal of the lesion, but treatment of infection and preventing tissue damage are issues that still remain to be addressed. Herbal medicine and biological studies have focused on developing antiviral drugs from natural sources. In this study, we analyzed the potential antiviral effects of Pinus densiflora Sieb. et Zucc. leaf extracts against HPV. The pine needle extracts from each organic solvent were analyzed for antiviral activity. The methylene chloride fraction (PN-MC) showed the highest activity against HPV pseudovirus (PV). The PN-MC extract was more effective before, rather than after treatment, and therefore represents a prophylactic intervention. Mice were pre-treated with PN-MC via genital application or oral administration, followed by a genital or subcutaneous challenge with HPV PV, respectively. The HPV challenge results showed that mice treated via genital application exhibited complete protection against HPV. In conclusion, PN-MC represents a potential topical virucide for HPV infection.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.