• Title/Summary/Keyword: Protection Algorithm

Search Result 820, Processing Time 0.024 seconds

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

Improvement of the Protection Algorithm Based on Voltage Difference Method for Detecting Arcing Faults within 22.9kV Shunt Capacitor Banks (22.9kV급 병렬 커패시터 뱅크 내부의 아크 고장 판별을 위한 전압차동 보호 알고리즘의 개선 방안)

  • Lim Jung-Uk;Kwon Young-Jin;Kang Sang-Hee;Yuk Yoo-Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents a refined protection algorithm of the unfused 22.9kV shunt capacitor banks in grounded wye connection to improve the existing algorithm using the voltage difference method. It is difficult to detect ground faults with arc near the input points or ground faults near the grounding point by the existing algorithm using only the voltage balanced relay. This paper shows that ground faults with arc near the input point can be detected by harmonics analysis of the differential voltage and that it has no impact of harmonics out of nonlinear loads which have the quantitative influence on capacitor banks. Thus the proposed method using harmonics analysis can be a proper detection method. In case of ground faults near the grounding point, an OVGR is being added recently and its validity is verified in this paper. The proposed method is applied to a 22.9kV example system and is verified that the proposed algorithm can detect clearly faults which are not easy to detect by the existing method.

Algorithm for Fault Detection and Classification Using Wavelet Singular Value Decomposition for Wide-Area Protection

  • Lee, Jae-Won;Kim, Won-Ki;Oh, Yun-Sik;Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Yoon Sang;Park, Chul-Won;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.729-739
    • /
    • 2015
  • An algorithm for fault detection and classification method for wide-area protection in Korean transmission systems is proposed. The modeling of 345-kV and 765-kV Korean power system transmission networks using the Electro Magnetic Transient Program - Restructured Version (EMTP-RV) is presented and the algorithm for fault detection and classification in transmission lines is developed. The proposed algorithm uses the Wavelet Transform (WT) and Singular Value Decomposition (SVD). The Singular value of Approximation coefficient (SA) and part Sum of Detail coefficient (SD) are introduced. The characteristics of the SA and SD at the fault conditions are analyzed and used in the algorithm for fault detection and classification. The validation of the proposed algorithm is verified by various simulation results.

D-q Equivalent Circuit-based Protection Algorithm for a Doubly-fed Induction Generator in the Time Domain

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Lee, Ji-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.371-378
    • /
    • 2010
  • Most modern wind turbines employ a doubly-fed induction generator (DFIG) system due to its many advantages, such as variable speed operation, relatively high efficiency, and small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. We propose a protection algorithm for a DFIG based on a d-q equivalent circuit in the time domain. In the DFIG, the voltages and currents of the rotor side and the stator side are available. The proposed algorithm estimates the instantaneous induced voltages of magnetizing inductance using those voltages and currents from both the stator and the rotor sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects an internal fault. The performance of the proposed algorithm is verified under various operating and fault conditions using a PSCAD/EMTDC simulator.

Protection for DFIG using the d-q Equivalent Circuit (d-q 등가회로를 이용한 이중여자 유도발전기 보호)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun;Park, Goon-Cherl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2173-2178
    • /
    • 2008
  • A doubly-fed induction generator(DFIG) system has been widely used in the modem wind turbines due to variable-speed operation, high efficiency and small converter size. It is well known that an inter-turn fault of a generator is very difficult to be detected. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper proposes a protection algorithm for a DFIG using the d-q equivalent circuit in the time domain. In the case of a DFIG, the voltages and currents of the rotor side as well as the voltages and currents of the stator are available. The proposed algorithm estimates the instantaneous(i.e., converted into the stationary frame) induced voltages from the rotor and the stator sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects the inter-turn fault. The algorithm can detect a inter-turn fault of a winding. The performance of the proposed algorithm is validated using a PSCAD/EMTDC simulator under inter-turn fault conditions and normal operating conditions such as an external fault and the change of the wind speed.

Development of Protection Coordination Algorithm for Smart Distribution Management System using Communication Method based on IEC61850 (IEC61850 기반의 통신방식을 이용한 스마트 배전운영시스템용 보호협조 알고리즘 개발)

  • Chu, Cheol-Min;Yun, Sang-Yun;Kwan, Seung-Chul;Chu, Kyung-Yong;Jin, Young-Kyu;Choi, Myeon-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1412-1419
    • /
    • 2012
  • In this paper, we propose the protection coordination algorithm using communication methode based on IEC 61850. The communication protocol in power distribution management system has been issued by IEC standard, IEC61850 of them, which was made for substation automation system, has researched to apply into power distribution system, even though the standard is not a suitable for the system. In smart distribution management system' launched in 2009, the communication network based on the ethernet network for IEC 61850 has been designed to apply the self-healing concept, which is to perform the system protection through the communication between remote terminal units(RTU) according to the standard. However, it is first time to apply the scheme in the real. Thus, this paper proposed the protection algorithm and consideration for applying communication method and introduced the result of demonstration.

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

Synchronous Generator Protective Algorithm using Wavelet Transform of Fault Currents (고장전류의 웨이브릿 변환을 이용한 동기 발전기 보호 알고리즘)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.834-840
    • /
    • 2007
  • A generator plays an important role in transferring an electric power to power system networks. The generator protection systems in Korea have been imported and operated through a tum-key from overseas entirely. Therefore, a study of the generator protection field has in urgent need for a stable operation of the imported goods, and for preparation of next generation protection system. The paper describes the fault detection algorithm using WT(Wave!et Transform) of currents for a generator protection. The fault current signals after executing a terminal fault modeling collect using a MA TLAB package, and calculate the wavelet coefficients through the process of a multi -level decomposition (MLD). The proposed algorithm for a fault detection using the Daubechies WT (wavelet transform) was executed with a C language for the command line function and for the real time realization after analyzing MATLAB's graphical interface. The advanced technique had complemented the defects of a DFT by applying a Daubechies WT. and had improved faster a speed and more accurate of fault discriminant than a conventional DFR.

Analysis of DDoS Prevention Algorithm in Mobile Ad-hoc Network (MANET 환경에서의 DDoS 공격방지 알고리즘 분석)

  • Kim, Dong-Chul
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • In this paper, the information security requirements in the mobile ad-hoc network(MANET) are presented, and the algorithm to establish the protection node(gateway) is proposed to prevent the distributed denial of service(DDoS). The information security technology and security threats in the MANET are presented, and protection node is decided to minimize the total cost through the sending nodes and receiving nodes by way of protection node. To set up the protection node, the minimization algorithms of maximum cost and the average cost between the protection node and receiving nodes are compared with the optimal solutions, in which optimal solution is found out by all enumeration method. From the results, the total cost between the sending and receiving nodes is minimized under the average cost minimization algorithm rather than the using of the maximum cost.

A Percentage Currant Differential Relaying Algorithm for Bus Protection Using an Advanced Compensation Algorithm of the Secondary Current of CTs (개선된 변류기 2차 전류 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • Kang, Yong-Cheol;Yun, Jae-Sung;Lim, Ui-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.9-11
    • /
    • 2002
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensation algorithm of the secondary current of CTs. A percentage current differential relaying algorithm may maloperate in case of external faults with CT saturation. Thus, it needs an additional method to cope with CT saturation. The advanced compensation algorithm is unaffected by a remanent flux. The proposed relaying algorithm does not need any additional methods for CT saturation and is unaffected by the remanent flux and has the wide operating zone of current differential relays.

  • PDF