• Title/Summary/Keyword: Proteasome

Search Result 203, Processing Time 0.026 seconds

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

Crystal Structure of p97 N-D1 Hexamer in Complex with p47 UBX Domain

  • Thang Quyet Nguyen;Wonchull Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • The p97 adenosine triphosphatase is a key player in protein homeostasis, responsible for unfolding ubiquitylated substrates. It engages with various adaptor proteins through its N-terminal domain, with the p97-p47 complex attracting particular attention for its involvement in membrane remodeling. Although the structures of p97 in complex with the Ubiquitin regulatory X (UBX) domain from various adaptors have been reported, the stoichiometry is conflicting. Here, we report the crystal structure of the p97 N-D1 hexamer in complex with the p47 UBX domain at a resolution of 2.7 Å. The structure reveals a stoichiometry of 6:6 between the p97 N-D1 and the p47 UBX domain. These findings provide valuable insights into the binding stoichiometry of p97 N-D1 and p47 UBX domain, which are crucial for understanding the role of p97 and adaptor proteins in cellular processes such as the ubiquitin-proteasome pathway, membrane fusion, and cell cycle regulation.

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Bis is Induced by Oxidative Stress via Activation of HSF1

  • Yoo, Hyung Jae;Im, Chang-Nim;Youn, Dong-Ye;Yun, Hye Hyeon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as $H_2O_2$ treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by $H_2O_2$, accompanied by increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.

Members of Ectocarpus siliculosus F-box Family Are Subjected to Differential Selective Forces

  • Mahmood, Niaz;Moosa, Mahdi Muhammad;Matin, S. Abdul;Khan, Haseena
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.1.1-1.7
    • /
    • 2012
  • Background: The F-box proteins represent one of the largest families of proteins in eukaryotes. Apart from being a component of the ubiquitin (Ub)/26 S proteasome pathways, their regulatory roles in other cellular and developmental pathways have also been reported. One interesting feature of the genes encoding the proteins of this particular family is their variable selection patterns across different lineages. This resulted in the presence of lineage specific F-box proteins across different species. Findings: In this study, 48 non-redundant F-box proteins in E. siliculosus have been identified by a homology based approach and classified into three classes based on their variable C-terminal domains. A greater number of the F-box proteins have domains similar to the ones identified in other species. On the other hand, when the proteins having unknown or no C-terminal domain (as predicted by InterProScan) were analyzed, it was found that some of them have the polyglutamine repeats. To gain evolutionary insights on the genes encoding the F-box proteins, their selection patterns were analyzed and a strong positive selection was observed which indicated the adaptation potential of the members of this family. Moreover, four lineage specific F-box genes were found in E. siliculosus with no identified homolog in any other species. Conclusions: This study describes a genome wide in silico analysis of the F-box proteins in E. siliculosus which sheds light on their evolutionary patterns. The results presented in this study provide a strong foundation to select candidate sequences for future functional analysis.

Inhibition of Human $CD8^+$ Cytotoxic T Lymphocyte (CTL) -mediated Cytotoxicity in Porcine Fetal Fibroblast Cells by Overexpression of Human Cytomegalovirus Glycoprotein Unique Short (US) 2 Gene

  • Park, K-W.;Yoo, J.Y.;Choi, K.M.;Yang, B.S.;Im, G.S.;Seol, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • Xenotransplantation of pig organs into humans is a potential solution for the shortage of donor organs for transplantation. However, multiple immune barriers preclude its clinical application. In particular, the initial type of rejection in xenotransplantation is an acute cellular rejection by host $CD8^+$ cytotoxic T lymphocyte (CTL) cells that react to donor major histocompatibility complex (MHC) class I. The human cytomegalovirus (HCMV) glycoprotein Unique Short (US) 2 specifically targets MHC class I heavy chains to relocate them from the endoplasmic reticulum (ER) membrane to the cytosol, where they are degraded by the proteasome. In this study we transfected the US2 gene into minipig fetal fibroblasts and established four US2 clonal cell lines. The integration of US2 into transgenic fetal cells was confirmed using PCR and Southern blot assay. The reduction of Swine Leukocyte Antigen (SLA)-I by US2 was also detected using Flow cytometry assay (FACS). The FACS analysis of the US2 clonal cell lines demonstrated a substantial reduction in SLA-I surface expression. The level (44% to 76%) of SLA-I expression in US2 clonal cell lines was decreased relative to the control. In cytotoxicity assay the rate of $CD8^+$ T cell-mediated cytotoxicity was significantly reduced to 23.8${\pm}$15.1% compared to the control (59.8${\pm}$8.4%, p<0.05). In conclusion, US2 can directly protect against $CD8^+$-mediated cell lysis. These results indicate that the expression of US2 in pig cells may provide a new approach to overcome the CTL-mediated immune rejection in xenotransplantation.

BmNPV Infection Enhances Ubiquitin-conjugating Enzyme E2 Expression in the Midgut of BmNPV Susceptible Silkworm Strain

  • Gao, Lu;Chen, Keping;Yao, Qin;Chen, Huiqing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • The ubiquitin conjugating enzyme 2 (E2) is core component of ubiquitin proteasome pathway (UPP) which represents a selective mechanism for intracellular proteolysis in eukaryotic cells. The E2 has been implicated in the intracellular transfer of ubiquitin to target protein. We show here the involvement of E2 in antiviral immune of Bombyx mori to Bombyx mori nuclear polyhedrosis virus (BmNPV). In this study, mRNA fluorescent differential display PCR (FDD-PCR) was performed with BmNPV highly resistant silkworm strain NB and susceptible silkworm strain 306. At 24 h post BmNPV infection, FDD-PCR with the arbitrary primer AP34 showed that one cDNA band was down-regulated in the midgut of resistant strain, but highly expressed in susceptible strain. The deduced amino acid sequence of this cDNA clone share 99% identity with the recently published B. mori ubiquitin conjugating enzyme E2 (Genbank NO: DQ311351). Fluorescent quantitative PCR corroborated down regulation of E2 in resistant strain. We there conclude that BmNPV infection evokes strong response of susceptible strain including activation of UPP. BmNPV may evolve escape mechanisms that manipulate the UPP in order to persist in the infected host. In addition, the identification of down-regulation of E2 in resistant strain, as well as structure data, are essential to understanding how UPP operates in silkworm antiviral immune to BmNPV disease.

Promoter Methylation Status of Two Novel Human Genes, UBE2Q1 and UBE2Q2, in Colorectal Cancer: a New Finding in Iranian Patients

  • Mokarram, Pooneh;Shakiba-Jam, Fatemeh;Kavousipour, Soudabeh;Sarabi, Mostafa Moradi;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8247-8252
    • /
    • 2016
  • Background: The ubiquitin-proteasome system (UPS) degrades a variety of proteins which attach to specific signals. The ubiquitination pathway facilitates degradation of damaged proteins and regulates growth and stress responses. This pathway is altered in various cancers, including acute lymphoblastic leukemia, head and neck squamous cell carcinoma and breast cancer. Recently it has been reported that expression of newly characterized human genes, UBE2Q1 and UBE2Q2, putative members of ubiquitin-conjugating enzyme family (E2), has been also changed in colorectal cancer. Epigenetics is one of the fastest-growing areas of science and nowadays has become a central issue in biological studies of diseases. According to the lack of information about the role of epigenetic changes on gene expression profiling of UBE2Q1 and UBE2Q2, and the presence of CpG islands in the promoter of these two human genes, we decided to evaluate the promoter methylation status of these genes as a first step. Materials and Methods: The promoter methylation status of UBE2Q1 and UBE2Q2 was studied by methylation-specific PCR (MSP) in tumor samples of 60 colorectal cancer patients compared to adjacent normal tissues and 20 non-malignant controls. The frequency of the methylation for each gene was analyzed by chi-square method. Results: MSP results revealed that UBE2Q2 gene promoter were more unmethylated, while a higher level of methylated allele was observed for UBE2Q1 in tumor tissues compared to the adjacent normal tissues and the non malignant controls. Conclusions: UBE2Q1 and UBE2Q2 genes show different methylation profiles in CRC cases.

Expression of HERC4 in Lung Cancer and its Correlation with Clinicopathological Parameters

  • Zeng, Wen-Li;Chen, Yao-Wu;Zhou, Hui;Zhou, Jue-Yu;Wei, Min;Shi, Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.513-517
    • /
    • 2015
  • Background: Growing evidence suggests that the members of the ubiquitin-proteasome system (UPS) are important for tumorigenesis. HERC4, one component, is a recently identified ubiqutin ligase. However, the expression level and function role of HERC4 in lung cancer remain unknown. Our objective was to investigate any correlation between HERC4 and development of lung cancer and its clinical significance. Materials and Methods: To determine HERC4 expression in lung cancer, an immunohistochemistry analysis of a tissue microarray containing samples of 10 lung normal tissues, 15 pulmonary neuroendocrine carcinomas, 45 squamous epithelial cancers and 50 adenocarcinomas was conducted. Receiver operating characteristic (ROC) curve analysis was applied to obtain a cut-off point of 52.5%, above which the expression of HERC4 was regarded as "positive". Results: On the basis of ROC curve analysis, positive expression of HERC4 was detected in 0/10 (0.0%) of lung normal tissues, in 4/15 (26.7%) of pulmonary neuroendocrine carcinomas, in 13/45 (28.9%) of squamous epithelial cancers and in 19/50 (38.0%) of adenocarcinomas. It showed that lung tumors expressed more HERC4 protein than adjacent normal tissues (${\chi}^2$=4.675, p=0.031). Furthermore, HERC4 positive expression had positive correlation with pT status (${\chi}^2$=44.894, p=0.000), pN status (${\chi}^2$=43.628, p=0.000), histological grade (${\chi}^2$=7.083, p=0.029) and clinical stage (${\chi}^2$=72.484, p=0.000), but not age (${\chi}^2$=0.910, p=0.340). Conclusions: Our analysis suggested that HERC4 is likely to be a diagnostic biomarker for lung cancer.