• Title/Summary/Keyword: Prostaglandin E2 Tumor necrosis factor-$\alpha$

Search Result 183, Processing Time 0.031 seconds

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.

Anti-inflammatory Activities of Fermented Black Garlic (흑마늘 발효물의 항염증 활성)

  • Tak, Hyun-Min;Kang, Min-Jung;Kim, Kyoung Min;Kang, Dawon;Han, Sunkyu;Shin, Jung-Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1527-1534
    • /
    • 2014
  • In this study, we investigated the anti-inflammatory effects of Lactobacillus rhamnosus fermented black garlic (FBG) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. FBG did not show cytotoxicity in RAW 264.7 cells at concentrations less than $800{\mu}g/mL$, and cell viability increased with FBG concentration. Nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production as well as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) and IL-6 formation decreased in an FBG concentration-dependent manner, in LPS-induced RAW 264.7 cells. Furthermore, activation of LPS-inducible nitric synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-${\kappa}B$), and inhibitory kappa B ($I{\kappa}B$) protein expression was effectively inhibited by FBG treatment in LPS-induced RAW 264.7 cells. In contrast, heme oxygenase-1 (HO-1) protein expression significantly increased. These results indicate that the anti-inflammatory activity of FBG was due to activation of NF-${\kappa}B$, inhibition of cytokine production, and expression of iNOS and COX-2. From these results, we expect that FBG could contribute to the prevention and improvement of inflammatory disease.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.

Analysis of Periodontitis Biomarker Expression in Gingival Crevicular Fluids

  • Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • Background: Periodontal disease, also known as gum disease, is a major dental inflammatory disease with a very high prevalence; it is the main cause of tooth loss. Therefore, diagnostic biomarkers that can monitor gum inflammation are important for oral healthcare. Since the gingival crevicular fluid (GCF) adequately reflects changes in the periodontal environment, they have become a target for the development of effective diagnostic biomarkers for periodontitis. In the present study, the level of the target molecules suggested as diagnostic biomarkers for periodontitis were analyzed in GCF samples collected from healthy individuals and periodontitis patients. In addition, useful targets for the diagnosis of periodontitis were evaluated. Methods: GCF samples were collected from healthy individuals and periodontitis patients using absorbent paper points. SDS-PAGE and Coomassie staining were performed for protein analysis. The protein concentrations of GCF specimens were determined using the Bradford method. The levels of the target molecules appropriate for diagnosing periodontal disease were measured by ELISA, according to the manufacturer's protocol. Results: The protein concentration of GCF collected from periodontitis patients was 3.72 fold higher than that in an equal volume of GCF collected from healthy individuals. ELISA analysis showed that the level of interukin-6 (IL-6), IL-8, metalloproteinases 2 (MMP-2), MMP-9, tumor necrosis factor-alpha (TNF-α), azurocidin, and odontogenic ameloblast-associated protein (ODAM) were higher in the GCF samples from the periodontitis patients than in those from the healthy individuals. However, the level of IL-6 and TNF-α were relatively low (> 5 pg/ml). The prostaglandin E2 (PGE2) levels were not significantly different between the two GCF samples. Conclusion: These results indicate that IL-8, MMP-2, MMP-9, azurocidin, and ODAM are potentially useful diagnostic biomarkers for periodontitis; combining multiple biomarkers will improve the diagnostic accuracy of periodontitis.

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

The inflammatory activity of purified-ferulic acid from Tetragonia tetragonioides

  • Kim, Na-Hyeon;Park, Hye-Jin;Lee, Eun-Ho;Cho, Eun-Bi;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.239-246
    • /
    • 2019
  • In this study, an evaluation of the anti-inflammatory effect of ferulic acid isolated from Tetragonia tetragonioides in lipopolysaccharide (LPS) simulated RAW 264.7 cells was made. The chemical structure of the active compound was elucidated by $^1H$-NMR, $^{13}C$-NMR, and FAB-MS, and was confirmed to be ferulic acid. Ferulic acid was purified via open column chromatography with Sephadex LH-20 and MCI gel CHP-20. To test the anti-inflammatory effect of ferulic acid, LPS-stimulated RAW 264.7 cells were treated in subsequent experiments with different concentrations of ferulic acid (5, 10, and $25{\mu}g/mL$) and the levels of inflammatory cytokines and enzymes were also measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Cell viability was above 95% at acid concentrations ranging from $5-25{\mu}g/mL$. The results showed that 30% of the production of nitric oxide and 66% of prostaglandin $E_2$ were inhibited by $25{\mu}g/mL$ of ferulic acid, it also inhibited the protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 by 70%. Additionally, it inhibited the production of the pro-inflammatory cytokines, tumor necrosis factor-${\alpha}$, interleukin-6, and interleukin-$1{\beta}$ by 40, 75, and 77%, respectively. According to these results, the anti-inflammatory activity of ferulic acid was demonstrated via his implication in the inhibition of the expression and secretion of inflammatory substances in LPS-stimulated RAW 264.7 cells. Therefore, we concluded that ferulic acid can be used as a functional additive having anti-inflammatory activity.

Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages (LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과)

  • Yang, Hui;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, anti-inflammatory activity of hot water extract of Aronia fruits (AF-H) was examined. Pre-treatment with AF-H significantly inhibited production of nitric oxide (NO) and prostaglandin E-2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The inhibitory effect of AF-H on LPS-induced inflammation was also confirmed by down-regulation of inducible NO synthase as well as cyclooxygenase-2 protein expression. Furthermore, treatment with AF-H significantly inhibited secretion of inflammatory cytokines such as tumor-necrosis $factor-{\alpha}$ and interleukin-6. Signal transduction pathway studies further indicated that AF-H inhibited LPS-induced activation of nuclear $factor-{\kappa}B$, but not mitogen-activated protein kinase. Treatment with AF-H also partially protected against LPS-induced lethal shock in C57BL/6 mice, although its effect was not statistically significant. These results suggest that AF-H is a more promising nutraceutical or medicinal agent for inhibition of LPS-induced inflammation or inflammation-related diseases.

Anti-osteoarthritic effects of a combination of pomegranate concentrate powder, Eucommiae cortex and Achyranthis radix in rats

  • Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.86-113
    • /
    • 2018
  • Objectives: We examined the effects of a mixed formula consisting of dried pomegranate concentrate powder (PCP) and the aqueous extracts of Eucommiae cortex (EC) and Achyranthis radix (AR) in rats with surgically induced osteoarthritis (OA). Methods: Two weeks after OA-inducing surgery, a PCP:EC:AR 5:4:1 (g/g) combination or single formula was orally administered. Changes in body weight, knee thickness, maximum knee extension angle, bone mineral density of the knee joints, femoral and tibial articular surfaces, and compressive strength of the femoral and tibial articular cartilage (AC) were assessed, along with the prostaglandin E2 level, 5-lipoxygenase, matrix metalloproteinase (MMP)-2 and MMP-9 activity, and chondrogenic gene mRNA expression in the femoral and tibial AC with the synovial membrane (SM). In addition, the number of cleaved poly(ADP-ribose) polymerase, cyclooxygenase and tumor necrosis factor-${\alpha}$-immunoreactive cells in the femoral and tibial AC with SM were monitored, and the rate of cell proliferation was determined with a 5-bromo-2'-deoxyuridine uptake assay. Results : The signs of surgically induced OA in rats were significantly inhibited by both PCP, EC and AR combined and single formulas. In particular, the combination formula-treated OA model rats showed dose-dependent, significantly increased inhibitory activity against all tested criteria compared with single formula-treated rats. Conclusions: Taken together, our results suggest that the combination formula synergistically increased the anti-OA effects of its components through anti-inflammatory and chondrogenic activity in rats with surgically induced OA. In addition, 200, 100 and 50 mg/kg combination formula treatments showed dose-dependent inhibitory activity against all of the tested criteria.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

  • Wang, Lan;Xu, Ming Lu;Liu, Jie;Wang, You;Hu, Jian He;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.579-585
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS: An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS: Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and the anti-inflammatory cytokines IL-$1{\beta}$ and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS: Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress.