• 제목/요약/키워드: Prostaglandin E

검색결과 849건 처리시간 0.031초

Anti-inflammatory effect of remifentanil in lipopolysaccharide-stimulated amniotic epithelial cells

  • Kim, Cheul-Hong;Jeong, Seong Soon;Park, Soon Ji;Choi, Eun-Ji;Kim, Yeon Ha;Ahn, Ji-Hye
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제19권5호
    • /
    • pp.253-260
    • /
    • 2019
  • Background: Sometimes general anesthesia is required for dental surgery in pregnant women. Facial bone fractures or neck abscess should be treated immediately. Dental surgery, however, creates a stressful situation that can cause inflammation. Inflammatory responses are a well-known major cause of preterm labor and preterm birth. Here we demonstrate the effects of remifentanil on the factors related to preterm labor and its mechanism of action on amniotic-derived epithelial cells (WISH cells). Methods: WISH cells were exposed to lipopolysaccharide (LPS) for 24 h and co-treated with various concentrations of remifentanil. MTT assays were performed to measure cell viability. To explain the effects of remifentanil on the factors related to inflammation in WISH cells, activation of nuclear factor kappa B ($NF-{\kappa}B$) and p38 and the expression of interleukin $(IL)-1{\beta}$, tumor necrosis factor $(TNF)-{\alpha}$, cyclooxygenase (COX)2, and prostaglandin E $(PGE)_2$ were quantified using western blotting and RT-PCR, respectively. Results: Remifentanil did not affect WISH cell viability. In western blot analysis, co-treatment with remifentanil resulted in decreased phosphorylation of $NF-{\kappa}B$, and expression of COX2 and $PGE_2$ in LPS-induced inflammation, but the results were statistically significant only at low concentrations. Reduction of $IL-1{\beta}$ and $TNF-{\alpha}$ expression was also observed with RT-PCR. Conclusion: Co-treatment with remifentanil does not affect the viability of WISH cells, but reduces the expression of the factors related to inflammation, which can induce uterine contraction and preterm labor. These findings provide evidence that remifentanil may inhibit uterine contraction and preterm labor in clinical settings.

양격산화탕(凉膈散火湯)의 항염증(抗炎症) 효과에 대한 연구 (The Inhibitory Effects of Yang Geouk San Hwa-Tang on LPS-stimulated inflammation in RAW264.7 macrophage cells)

  • 탁미진;탁명림;강경화;고우신;윤화정
    • 한방안이비인후피부과학회지
    • /
    • 제23권1호
    • /
    • pp.118-134
    • /
    • 2010
  • Objective: Yang Geouk San Hwa - Tang (YGSHT) has been widely used in Sasang Constitutional Medicine of Korea for treatment of acute inflammatory symptom, such as palatine tonsillitis, polydipsia, headache, papule, pimple however, the mechanism of its anti-inflammatory activity has not been clarified. In this study, therefore, we investigated the mechanism of the inhibitory effect of YGSHT on LPS-induced inflammation. Materials and methods: The effect of YGSHT was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. Results: We found that YGSHT suppressed not only the production of pre-inflammatory cytokines (IL-$1{\beta}$ and TNF-$\alpha$), the generation of nitric oxide (NO) and prostaglandin E (PGE)2, but also the mRNA expression of pre-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2. Furthermore, YGSHT was shown to inhibit the phosphorylation of ERK1/2 and JNK1/2 and the activation and translocation of NF-kB from cytosol to nuclear in LPS-stimulated RAW264.7 cells. Conclusions: These results suggest that YGSHT exerts an anti-inflammatory effect through the regulation of the ERK1/2 and JNK1/2 pathway and NF-kB pathway, thereby decreasing production of pre-inflammatory cytokines, NO, and PGE2.

내탁천금산(內托千金散)이 RAW 264.7 대식세포주에서 항염증 활성에 미치는 영향 (Effects of Naetakcheongeum-san on Anti-inflammatory Activities in RAW 264.7 cells)

  • 김태준;김용민;김희택
    • 한방안이비인후피부과학회지
    • /
    • 제31권1호
    • /
    • pp.12-21
    • /
    • 2018
  • Objectives : Inflammation is one of the self-protective abilities against tissue injury, and it has clinical symptoms like redness, heat, swelling, pain, and loss of function. The purpose of this study is to examine inhibitory effects of Naetakchunkeum-san (NTCKS) on nitric oxide (NO), Prostaglandin E2 (PGE2), inducible NOS (iNOS), cyclooxygenase-2 (COX-2), and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), which play a major role in inflammatory response. Methods : The experiment was performed using Raw 264.7 cells pretreated with NTCKS extracts. Cell viability was determined by MTT assay. To evaluate anti-inflammatory effects of NTCKS, we examined NO and $PGE_2$ production in LPS-induced macrophages. We also investigated effects of NTCKS on iNOS, Cox-2, and ERK1/2 expression using western blot. Results : In MTT assay, no cytotoxicity of NTCKS (50, 100, 150, $200{\mu}g/ml$) on RAW 264.7 cell was found. LPS-induced NO production was decreased after treatment with NTCKS (150, $200{\mu}g/ml$)(p<0.05). $PGE_2$ was decreased after treatment with NTCKS (150, $200{\mu}g/ml$)(p<0.05). NTCKS inhibited LPS-induced expressions of iNOS and COX-2 in a dose-dependent manner. Increased phosphorylation of ERK1/2 by LPS was decreased by NTCKS in a dose-dependent manner. Conclusions : According to above experiments, NTCKS may be applied to inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, and inflammatory bowel disease.

Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong;Choi, Youn Kyung;Lee, Ji-Hyeok;Kim, Seo-Young;Kim, Hyun-Soo;Jeon, You-Jin;Heo, Soo-Jin
    • 한국키틴키토산학회지
    • /
    • 제22권3호
    • /
    • pp.185-193
    • /
    • 2017
  • Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

The hyaluronan synthesis inhibitor 7-hydroxy-4-methylcoumarin inhibits LPS-induced inflammatory response in RAW 264.7 macrophage cells

  • Kim, Gwan Bo;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.263-268
    • /
    • 2021
  • 7-Hydroxy-4-methylcoumarin (7H-4MC) inhibits hyaluronan production in multiple cell lines and tissue types both in vitro and in vivo. It is a commercially available drug approved for human use, called hymecromone, in European and Asian countries to prevent biliary spasms. Nevertheless, as the pharmacological efficacy of 7H-4MC has not yet been reported in macrophages, this study investigated its anti-inflammatory effects and mechanism of action using lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. LPS-induced RAW 264.7 cells were treated with various concentrations of 7H-4MC (62.5, 125, 250, and 500 μM). The application of 7H-4MC significantly reduced nitric oxide and prostaglandin E2 production without cytotoxic effects. Additionally, 7H-4MC strongly decreased the expression of inducible nitric oxide synthase and cyclooxygenase. Furthermore, 7H-4MC reduced the production of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Finally, 7H-4MC exerted its potent anti-inflammatory actions via the upregulation of IκB-α production, which led to the inhibition of nuclear factor-κB (NF-κB) activity. These results, obtained in macrophage cell lines, suggest that 7H-4MC prevents inflammatory diseases via the NF-κB signaling pathway and that its use could be beneficial for human health. Ultimately, this is the first report describing the anti-inflammatory activity of 7H-4MC in a macrophage cell line.

Carica papaya leaf water extract promotes innate immune response via MAPK signaling pathways

  • Hyun, Su Bin;Ko, Min Nyeong;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.277-284
    • /
    • 2021
  • The emergence and rapid spread of the potentially fatal coronavirus disease 2019, caused due to infection by severe acute respiratory syndrome coronavirus-2, has led to worldwide interest in developing functional bioactive ingredients that act as immunomodulatory agents. In this study, we aimed to characterize Carica papaya extract and explore its potential as an immunomodulator by performing in vitro cell screening. Papaya leaf water extract (PLW) was found to significantly increase the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by upregulating inducible nitric oxide synthase and cyclo-oxygenase-2 activity, respectively. Additionally, PLW increased the production of tumor necrosis factor-α and interleukin 1β in RAW 264.7 cells. Furthermore, PLW activated the expression of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not that of p38 mitogen-activated protein kinase. These results indicate that PLW increased the production of NO, PGE2, and pro-inflammatory cytokines by activating the JNK and ERK pathways in macrophages, thus demonstrating immunomodulatory properties. Finally, high-performance liquid chromatography fingerprint analysis indicated the presence of rutin, narirutin, and ρ-coumaric acid in PLW (6.30, 119.76, and 47.25 ppm, respectively). Treating cells with these compounds at non-toxic concentrations had no effect on NO production. Taken together, these results suggest that PLW may have potential as an immunity-enhancing supplement.

Biological Effects of Light-Emitting Diodes Curing Unit on MDPC-23 Cells and Lipopolysaccharide Stimulated MDPC-23 Cells

  • Jeong, Moon-Jin;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제19권1호
    • /
    • pp.39-47
    • /
    • 2019
  • Background: Light-emitting diodes curing unit (LCU), which emit blue light, is used for polymerization of composite resins in many dentistry. Although the use of LCU for light-cured composite resin polymerization is considered safe, it is still controversial whether it can directly or indirectly have harmful biological influences on oral tissues. The aim of this study was to elucidate the biological effects of LCU in wavelengths ranging from 440 to 490 nm, on the cell viability and secretion of inflammatory cytokines in MDPC-23 odontoblastic cells and inflammatory-induced MDPC-23 cells by lipopolysaccharide (LPS). Methods: The MTT assay and observation using microscope were performed on MDPC-23 cells to investigate the cell viability and cytotoxic effects on LCU irradiation. Results: MDPC-23 cells and LPS stimulated MDPC-23 cells were found to have no effects on cell viability and cell morphology in the LCU irradiation. Nitric oxide (NO) and prostaglandin $E_2$ which are the pro-inflammatory mediators, and interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) which are the proinflammatory cytokines were significantly increased in MCPD-23 cells after LCU irradiation as time increased in comparison with the control. LCU irradiation has the potential to induce inflammation or biological damages in normal dental tissues, including MDPC-23 cells. Conclusion: Therefore, it is necessary to limit the use of LCU except for the appropriate dose and irradiation time. In addition, LCU irradiation of inflammatory-induced MDPC-23 cells by LPS was reduced the secretion of NO compared to the LPS alone treatment group and was significantly reduced the secretion of TNF-${\alpha}$ in all the time groups. Therefore, LCU application in LPS stimulated MDPC-23 odontoblastic cells has a photodynamic therapy like effect as well as inflammation relief.

Successful replantation of an amputated helical rim with microvascular anastomosis

  • Seo, Bommie Florence;Choi, Hyuk Joon;Lee, Min Cheol;Jung, Sung-No
    • 대한두개안면성형외과학회지
    • /
    • 제19권4호
    • /
    • pp.304-308
    • /
    • 2018
  • Replantation using microvascular anastomosis is considered to be the optimal method in treating the amputated ear in terms of resulting color, texture, and shape. Only a few cases of ear replantation have been reported because it is anatomically difficult to identify suitable vessels for anastomosis. We successfully replanted the amputated helical rim of the ear using single arterial anastomosis. A 37-year-old man had his helical rim amputated by a human bite. The amputee was about $4{\times}1cm$ in dimension, composed of skin and soft tissue including auricular cartilage. Replantation was performed anastomosing a small artery of the amputee with a terminal branch of the posterior auricular artery. After replantation, intravenous heparinization was performed and prostaglandin E1 and aspirin were administered. Venous congestion was decompressed by stab incisions applied with heparin solution soaked gauze. Venous congestion of the amputee slowly began to resolve at 4 days after the operation. The amputated segment of the helical rim survived completely with good aesthetic shape and color. The authors propose that performing microvascular anastomosis should be attempted especially if it is possible to detect vessels on cut surfaces of ear amputee and stump. Proper postoperative care for venous congestion, arterial insufficiency, and infection should be followed for amputee survival.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Choi, Ae-Jin;Choe, Jeong-Sook;Bae, Chun Ho;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1022-1032
    • /
    • 2019
  • Probiotics are known to provide the host with immune-modulatory effects and are therefore of remarkable interest for therapeutic and prophylactic applications against various disorders, including inflammatory diseases. Weissella cibaria JW15 (JW15) has been reported to possess probiotic and antioxidant properties. However, the effect of JW15 on inflammatory responses has not yet been reported. Therefore, the objective of the current study was to evaluate the anti-inflammatory potential of JW15 against lipopolysaccharide (LPS) stimulation. The production of pro-inflammatory factors and the cellular signaling pathways following treatment with heat-killed JW15 was examined in LPS-induced RAW 264.7 cells. Treatment with heat-killed JW15 decreased nitric oxide and prostaglandin $E_2$ production via down-regulation of the inducible nitric oxide synthase and cyclooxygenase-2. In addition, treatment with heat-killed JW15 suppressed the expression of pro-inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. The anti-inflammatory properties of treating with heat-killed JW15 were associated with mitogen-activated protein kinase signaling pathway-mediated suppression of nuclear factor-${\kappa}B$. These results indicated that JW15 possesses anti-inflammatory potential and provide a molecular basis regarding the development of functional probiotic products.