• 제목/요약/키워드: Propulsion torque

검색결과 164건 처리시간 0.021초

직접토크제어에 의한 전기추진선박의 추진전동기 속도 및 토크제어에 관한 연구 (A Study on the Speed and Torque Control of Propulsion Motor for Electric Propulsion Ship by Direct Torque Control)

  • 김종수;오세진;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.946-951
    • /
    • 2009
  • An induction motor based on DTC(Direct Torque Control) is being increasingly used in various industrial applications. DTC offers faster torque response and better speed control with lesser hardware and processing costs in compared with other controlled drives. This study was to evaluate performance of DTC for induction motor of electric propulsion ship. The simulation results indicated good speed and torque response from the low to middle speed range. Also, DTC has advantages such as the independency on motor parameter.

디젤기관의 토크 하모닉스에 대한 이론적 해석 (A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines)

  • 이용진;장민오;김의간;전효중
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

함정용 추진전동기 코깅 토크 저감에 관한 연구 (The Study on Reducing Cogging Torque of Propulsion Motor for Electric Ship)

  • 빈재구
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.18-23
    • /
    • 2005
  • Ships have been propelled and maneuvered by electrical drives since trle late seventies. Recently, rare earth PMs allow the design of brushless motors with very high efficiency over a wide speed range. This is the most important factor in ship propulsion technology. Several types PM motors have been developing for ship propulsion system. However these have disadvantage such as cogging torque. It causes an undesired effect that contributes to output ripple, vibration, and noise of machine. Therefore several techniques may be adopted in designing PM motor in order to reduce the cogging torque. This paper describes cogging torque receding methods such as adjusting arigap length, magnet arc, and magnet thickness. That are analysed by using the finite element method(FEM) and the maxwell stress tensor method.

고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가 (Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine)

  • 김인섭;윤현우;김준성;버광다오;이돈출
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

보조 전원을 이용한 12 펄스 다이오드 정류기를 사용하는 추진시스템의 고조파 및 토크 리플 저감 (Harmonic and Torque Ripple Reduction of Electric Propulsion System using 12-Pulse Diode Rectifier by Auxiliary Supply)

  • 김종수;서동환;최재혁
    • 해양환경안전학회지
    • /
    • 제19권1호
    • /
    • pp.66-70
    • /
    • 2013
  • 전기추진선박의 추진시스템에 주로 사용되는 3상 정류기의 입력전류는 다양한 저차 고조파를 포함하고 있다. 이러한 고조파 저감을 위해서 대전력이 필요한 대형 선박에 사용되는 전력변환장치는 12펄스 출력의 정류기가 현재 사용되고 있지만 여전히 $12{\pm}1$차의 고조파가 발생되는 문제점이 있다. 또한, 속도 및 토크 제어기법으로 널리 사용되고 있는 직접토크제어기법의 경우에는 토크 리플이 심하고 전동기의 입력전류는 인버터의 스위칭에 의해 고조파를 크게 포함하고 있다. 본 연구에서는 직접토크제어기법을 이용하는 전기추진시스템의 12펄스 정류기에 보조 전원을 공급하여 고조파를 저감하고 토크 제어성능을 향상시켰으며 실선시스템 환경에서 시뮬레이션을 통해 그 유효성을 입증하였다.

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

2D 조이스틱에 기반한 전동휠체어의 토크 분배 알고리즘 (The torque distribution algorithm of driving wheels using 2D joystick in the electric wheel-chair)

  • 박성준;박제욱;김장목
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.212-213
    • /
    • 2013
  • This paper proposes the algorithm of torque distribution in the electric wheel-chair using 2D joystick for drive safety. For the accurate driving performance, the specific and precise torque distribution is required in both wheels depending on signals of X-Y axis that is generated from 2D joystick. The signals of X-Y axis from joystick are transformed into the propulsion force and the torque reference. And the torque reference can be generated through the dynamic model of wheel-chair. The optimal dynamic characteristics of the electric powered wheelchair can be obtained, by adjusting the sensitivity coefficients of propulsion force and torque reference, In addition, the system takes smooth and stable control characteristics due to continuous torque output at all directions of joystick. The several simulations verify the usefulness of the proposed algorithm about torque distribution.

  • PDF

전기자동차 구동용 모터를 위한 전류 제어 기술 (An Overview: Current Control Technique for Propulsion Motor for EV)

  • 이희광;남광희
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.

비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구 (A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF

Design Characteristics of Torque Harmonics Reduction of Induction Motors for Electric Vehicle Propulsion

  • Jeon, Kyung-Won;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.212-215
    • /
    • 2013
  • This paper deals with torque harmonic characteristics and its reduction design of induction motors for electric vehicle (EV) propulsion. For calculating the stator harmonic flux of squirrel-cage induction motor, the numerical methods have been employed on the structural configuration design of stator and rotor teeth. In particular, torque ripples including spatial harmonics are obtained by Finite Element Method (FEM), and their individual harmonic components are identified with Fast Fourier Transform (FFT). In this paper, design modification on the teeth surface gives rise to the significant reduction of torque ripples including spatial torque harmonics, which have been obtained with FEM.