• Title/Summary/Keyword: Propulsion performance

Search Result 1,829, Processing Time 0.027 seconds

Numerical Investigation of the Effects of an Orifice Inlet on the Performance of an Ejector (Orifice Inlet효과에 의한 이젝터 성능에 관한 수치해석적 연구)

  • Lijo, Vincent;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.318-322
    • /
    • 2009
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, where as there was no appreciable transition in the performance for lower pressure ratios and the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is found that an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

A Study on the Resistance Performance of 39feet-class Leisure Boat with Propulsion Type of In-Board and In.Out-Board Engine (39feet급 선내기.선내외기 추진방식 레저보트의 저항특성 연구)

  • Park, Chung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1208-1214
    • /
    • 2008
  • The propulsion type of a small boats mainly were divided that the In-board and In out-board position located engine. The boats of the In-board and In out-board engine individually were propelled by propeller and stern drive. In this paper, 39feet-class leisure boats with propulsion type of In-board and In.out-board engine were performed to compare the effect of resistance performance using model test. As a result, leisure boat with In out-board engine is ascertained the optimum boat affects the speed and fuel efficiency.

Study of the Preliminary Design and Performance Prediction for the Hybrid Propulsion System (하이브리드 추진 시스템의 예비 설계 및 성능 예측에 관한 연구)

  • Yoon, Chang-Jin;Song, Na-Young;Yoo, Woo-Jun;Kim, Jin-Kon;Sung, Hong-Gye;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.17-23
    • /
    • 2006
  • This paper describes the preliminary design procedure for the hybrid propulsion system. For a given mission defined by velocity increment, the design of a polyethylene/LOX hybrid rocket was implemented. In addition, Seven-cluster multi-port fuel-grain was considered. After determining the system size including the combustion chamber, the performance parameters such as specific impulse, thrust, characteristic velocity, and thrust coefficient can be predicted by using empirical regression rate correlation, though most of preliminary design code assume constant regression rate. The results of the performance prediction indicated that besides the widely used HTPB/LOX, polyethylene/LOX hybrid motor can be a viable alternative to the more widely used SRMs.

  • PDF

Effects to the Ejector-jet Performance by the Physical Conditions of Rocket Gas in the RBCC configuration

  • Hasegawa, Susumu;Tani, Kouichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.122-129
    • /
    • 2008
  • Rocket Based Combined-Cycle(RBCC) engines are currently being explored as advanced propulsion for space transportation. JAXA has been conducting RBCC engine research by using various experimental facilities. In order to clarify the experimental results and contribute to the improvement of designing, the analysis of the RBCC engine in an ejector-jet mode was carried out using the CFD code developed in-house for unstructured grids. CFD replicated the characteristic flow structures. The numerical simulation of the pumping performance of the ejector driven by different rocket gases(He, $N_2,\;A_r$) and physical conditions were performed, and their effects on the performance were studied.

  • PDF

Propulsion System(Motor-Block) for High-Speed Train using IGCT Device (IGCT 소자를 사용한 고속전철용 추진제어장치(MOTOR-BLOCK))

  • Cho Hyun-Wook;Kim Tae-Yun;Kno Ae-Sook;Jang Kyung-Hyun;Lee Sang-Jun;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.665-670
    • /
    • 2005
  • This paper introduces the propulsion system(Motor Block) stabilization test result for Korean High Speed Railway(HSR). The developed propulsion system using high power semiconductor, IGCT(Integrated Gate Commutated Thyristor) consists of two PWM converter and VVVF inverter. In this paper, overall configuration of propulsion system is briefly described and stabilization tests are made to verify the developed propulsion system. The presented test results shows beatless control method of inverter output current at the 200km/h and performance test of BCH.

  • PDF