• 제목/요약/키워드: Propulsion control

검색결과 1,025건 처리시간 0.029초

선박 추진 시스템의 엔진-CPP 통합적 제어에 관한 연구 (A Study on the Engine-CPP Control of a Ship Propulsion System)

  • 김영복
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.427-432
    • /
    • 1998
  • There are many demands for ship control system and many studies have been proposed. For example, if a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved, satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption. In this context of view, this paper presents a controller design method for a ship propulsion system with CPP by Linear Matrix Inequality(LMI) which satisfies the given $H_{\infty}$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated through a simulation in the all operating ranges.

  • PDF

CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어 (Robust Decoupling Control of Ship Propulsion System with CPP)

  • 김영복;변정환
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

소형 선박용 전기추진시스템을 위한 PMSM의 센서리스 제어 (Sensorless Control of a Permanent Magnet Synchronous Motor for Electric Propulsion System of Small Ships)

  • 정태영;와유쿤토위보오;정석권
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.778-784
    • /
    • 2017
  • This paper proposes a sensorless speed control of a permanent magnet synchronous motor (PMSM) based on an adaptive sliding mode observer (SMO) for electric propulsion system of small ships. An adaptive observer gain is proposed based on the Lyapunov's stability criterion to reduce the chattering problem at any speed operation instead of the constant gain observer. Furthermore, a cascade low-pass filter with variable cut-off frequency is suggested to strengthen the filtering capability of the observer. The experimental results from a 1.5 kW PMSM drive are provided to verify the effectiveness of the proposed adaptive SMO. The result shows that the proposed method gives good speed control performances even when the PMSM operates at 0.5% from its rated speed value.

Linear Quadratic Servo Design for Magnetic Levitation Systems Considering Disturbance Forces from Linear Synchronous Motor

  • Kim, Chang-Hyun;Ahn, Hanwoong;Lee, Ju;Lee, Hyungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.944-949
    • /
    • 2017
  • Recently, the demand of maglev systems in the manufacturing industry for LCD and OLED display panels, which are required to be very clean and possess vacuum systems, has been increasing due to their characteristics such as being non-contact, noise free and eco-friendly. However, it is still a challenge to simultaneously control both the propulsion and levitation for their interactive effect difficult to be exactly measured. In this paper, we proposed a new tuning method for controlling the magnetic levitation force robustly against the levitation disturbance caused by a propulsion system, based on LQ servo optimal control. The disturbance torque of the LSM propulsion system is calculated through FEM analysis in such a way that the LQ servo controller is determined in order to minimize the effect of the disturbance. The robust performance of the proposed LQ servo control method for the in-track type magnetic levitation systems is demonstrated via simulations and experiments.

Repetitive Control with Specific Harmonic Gain Compensation for Cascaded Inverters under Rectifier Loads

  • Lv, Zheng-Kai;Sun, Li;Duan, Jian-Dong;Tian, Bing;Qin, HuiLing
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1670-1682
    • /
    • 2018
  • The further improvement of submarine propulsion is associated with the modularity of accumulator-fed inverters, such as cascaded inverters (CIs). CI technology guarantees smooth output voltages with reduced switch frequencies under linear loads. However, the output voltages of CIs are distorted under rectifier loads. This distortion requires harmonic suppression technology. One such technology is the repetitive controller (RC), which is commonly applied but suffers from poor performance in propulsion systems. In this study, the FFT spectrum of a CI under rectifier load is analyzed, and the harmonic contents are uneven in magnitude. For the purpose of harmonic suppression, the control gains at each harmonic frequency should be seriously considered. A RC with a specific harmonic gain compensation (SHGC) for CIs is proposed. This method provides additional control gains at low-order harmonic frequencies, which are difficult to achieve with conventional RCs. This SHGC consists of a band-pass filter (BPF) and proportional element and is easy to implement. These features make the proposed method suitable for submarine propulsion. Experimental results verify the feasibility of the improved RC.

Hybrid Phase Excitation Method for Improving Efficiency of 7-Phase BLDC Motors for Ship Propulsion Systems

  • Park, Hyung-Seok;Park, Sang-Woo;Kim, Dong-Youn;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.761-770
    • /
    • 2019
  • This paper proposes a hybrid phase windings excitation method for improving the efficiency of a 7-phase brushless DC (BLDC) motor in the electric propulsion system of a ship. The electrical losses of a BLDC motor system depend on the operating region and the number of excited phase windings (2-phase, 4-phase or general 6-phase windings). In this paper the operating region and torque/speed characteristics according to the motor rotation speed and propeller load are analyzed for a number of excitation methods. In addition, it analyzes the electrical losses of the system under each of the excitation methods in the entire operating region of the motor. In every sampling time, the proposed control method calculates the electrical loss of the system for each of the excitation methods and operates a 7-phase BLDC motor by selecting the excitation method that results a decreased electrical loss at the operating speed. The usefulness of the proposed control algorithm is verified through experimental results.

무인기용 직렬 하이브리드 동력시스템 운용 제어로직 (Operational Control Logic of Series Hybrid Power System for the Unmanned Aerial Vehicle)

  • 이보화;박부민;김근배
    • 한국추진공학회지
    • /
    • 제25권1호
    • /
    • pp.68-76
    • /
    • 2021
  • 본 연구에서 대상으로 삼은 직렬 하이브리드 시스템은 무인기용으로 왕복엔진, 발전기, 배터리를 주 동력원으로 사용한다. 발전기는 왕복엔진의 구동축에 직결되며, 왕복엔진-발전기 세트의 운용 특성은 지상통합시험을 통해 확인하였다. 본 연구에서는 해당 시험 결과를 바탕으로 왕복엔진-발전기 출력과 배터리 출력을 효율적으로 사용하기 위한 제어로직을 제시하였고, 로직에 따른 왕복엔진-발전기와 배터리의 출력 변동은 시뮬레이션을 통해 확인하였다. 그 결과, 발전기 출력은 제시된 제어로직에 의해 배터리 출력과 함께 추진요구전력을 공급함을 확인하였다.

우주비행체 추진기관 기술 현황 및 전망 (Status and Prospect of Spacecraft Propulsion System)

  • 김수겸;채종원;원수희;전형열
    • 한국항공우주학회지
    • /
    • 제44권8호
    • /
    • pp.695-701
    • /
    • 2016
  • 우주비행체 추진기관은 로켓엔진의 일종으로 인공위성, 우주탐사선 등의 임무수행을 위해 사용되며 인공위성 자세제어 및 궤도조정을 위한 수요에 따라 1950년대 말부터 개발되기 시작하였다. 우주비행체에 사용되는 추진시스템은 발사체와 달리 상대적으로 긴 기간의 임무수행이 요구되며, 이에 따라 추진제의 안정성 및 추진시스템의 내구성이 설계에 매우 중요한 요소가 된다. 최근에 우주추진 분야에서 주목받는 기술은 이온성 액체를 이용한 친환경 추진과 전기추진만으로 추진시스템을 구성하는 기술로 국내에서도 체계적인 연구개발이 필요하다. 본 논문에서는 우주추진기관의 국내외 현황 및 주목받는 기술들을 나열하고 이에 따른 개발 전망을 간략히 소개하였다.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF