• 제목/요약/키워드: Propulsion control

검색결과 1,025건 처리시간 0.023초

액체추진 발사체의 추진제 소진시스템 (Propellant utilization system on liquid-fuelled rocket)

  • 조기주;임석희;정영석;오승협
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.203-206
    • /
    • 2006
  • 액체 추진로켓의 총역적을 극대화를 위한 추진제 잔류량 최소화를 목적으로 하는 추진제 소진 시스템에 대한 분석을 수행하였다. 추진제 잔류량 변화의 주요 인자는 비행중 추진제 혼합비와 추진제의 실제 탑재량이다. 특히 극저온 추진제를 이용할 경우에는 온도 변화에 따른 밀도 변화가 잔류량 변화에 큰 영향을 준다. 비행 중 산화제 및 연료의 수위를 측정하여 필요 시 엔진으로 공급되는 유량을 조절함으로서 산화제 및 연료가 동시에 소진되도록 하는 시스템을 이용하여 잔류량을 최소할 수 있다. 이러한 시스템을 도입하기 위해서는 액체 로켓엔진의 혼합비 제어 시스템이 동반되어야 한다.

  • PDF

축소형 8200호대 전기기관차 추진시스템의 속도변화에 따른 역행특성 연구 (A Study on Powering Characteristic on Speed Variation of Propulsion System of Prototype 8200 Electric Locomotive)

  • 정노건;장진영;윤차중;김재문
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1467-1472
    • /
    • 2014
  • This paper study on powering characteristic on speed variation of propulsion system of prototype 8200 electric locomotive propulsion system through simulation modeling. For this purpose, it being applied in the field of railway IGBT (Insulated Gate Bipolar Transistor) elements are used. Converter was performed PLL (Phase-Locked Loop) control method that is used to control the phase and output voltage, and the inverter was carried an indirect vector control method to control the speed of traction motor. The results of simulation by modeling and experimental unit, we was confirmed that converter is controlled a unity power factor and output voltage by reference voltage. Also traction motor was controlled by indirect vector control and SVPWM inverter switching method very well.

Controlling-strategy design and working-principle demonstration of novel anti-winding marine propulsion

  • Luo, Yaojing;Ai, Jiaoyan;Wang, Xueru;Huang, Peng;Liu, Gaoxuan;Gong, Wenyang;Zheng, Jianwu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.48-59
    • /
    • 2020
  • A traditional propeller can easily become entangled with floating objects while operating. In this paper, we present a newly developed Electromagnetic-valve-control-based Water-jet Propulsion System (ECWPS) for an unmanned surface cleaning vessel that can be flexibly controlled via a Micro Control Unit (MCU). The double-structure was adapted to the unmanned surface cleaning vessel for floating-collection missions. Computational Fluid Dynamics (CFD) software for operating effect simulation was also used to reveal the working principle of the ECWPS under different conditions. Neglecting the assembly technique, the design level, controlling strategy, and maneuvering performance of the ECWPS reached unprecedented levels. The ECWPS mainly consists of an Electromagnetic-valve Array (EA), pipeline network, control system, and water-jet source. Both CFD analyses and experimental results show that the hydraulic characteristic of the ECWPS was predicted reasonably, which has enormous practical value and development prospects.

전기 추진 시스템의 냉각시스템에 관한 분석 및 설계 (Analysis & Design of Cooling System for Electric Propulsion System)

  • 오진석;조관준;곽준호;이지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.596-602
    • /
    • 2008
  • The cooling system is one of the most concerning factor for the reliability of the electric propulsion ship. Generally, a drive system operation in higher temperature decreases the device's reliability and power efficiency. The management of power loss and temperature of switching devices is indispensable for the reliability of the power electric system. In this paper, the switching devices are molded by IGBT, and the propulsion system is consisted of MIIR(Motor with Inverter Internal to Rotor). The system composition interacts with each other to calculate the loss and temperature of device. The calculation result is used for modeling and designing of the control and monitoring system for the electric propulsion system.

Development Study of Mono-Propellant Micro Propulsion Using MEMS Technology

  • Dan, Yoichiro;Kishida, Masahiro;Ikuta, Tatsuya;Takahashi, Koji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.597-600
    • /
    • 2004
  • Fabrication technique and performance test of catalytic micro propulsion are treated based on MEMS technology. This propulsion is designed to use hydrogen peroxide as liquid mono-propellant for attitude control of pica-satellite. The propellant is fed into the micro reactor channel and decomposed into hot gas yielding controllable thrust by catalyst. In order to increase the efficiency of the reaction that depends on the contact area of propellant and catalyst, porous surface formation on the channel accompanied by platinum particle deposition has been performed using H$_2$PtCl$_{6}$ solution as a precursor. Several thrusters were fabricated in different concentration of H$_2$PtCl$_{6}$ solution to determine the best quantity of Pt particles. For the comparison of the performance of each thruster, the volume of oxygen generated by the decomposition of hydrogen peroxide and the thrust were measured.red.

  • PDF

수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석 (Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds)

  • 황선홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

단일 구동기로 수중 이동이 가능한 수중 이동체 개발 (Development of Biomimetic Underwater Vehicle using Single Actuator)

  • 전명재;김동형;최현석;한창수
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.571-577
    • /
    • 2016
  • In this paper, we propose a novel propulsion method for a Biomimetic underwater robot, which is a bio-inspired approach. The proposed propulsion method mimics the pectoral fins of a real fish. Pectoral fins of real fish are able to propel and change direction. We designed the propulsion mechanism of 1 D.O.F. that has two functions (propel and change direction). We named this propulsion system 'Flipper'. The proposed propulsion method can control forward, pitch and yaw motion using the Flipper. We made an experimental underwater robot system and verified the proposed propulsion method. We measured its maximum speed and turning motion using an experimental underwater robot system. We also analyzed the thrust force from the maximum speed, using the thrust equation. Experimental results showed that our propulsion method enabled the thrust system of the biomimetic robot.

KSR-III 추진기관 공급계 PTA-I 종합수류시험 (PTA-I test of KSR-III Propulsion Feeding System)

  • 권오성;정영석;조인현;정태규;오승협
    • 한국추진공학회지
    • /
    • 제7권3호
    • /
    • pp.22-29
    • /
    • 2003
  • KSR-III 추진기관 공급계는 각종 배관류, 밸브류 및 이를 제어하는 제어기로 구성되어 있으며, 엔진으로 유입되는 추진제의 제어를 담당하고 있다. 이러한 공급계 시스템의 특성을 검증하고, 구성부품의 성능을 확인하기 위하여 PTA-I 수류시험을 실시하였다. PTA-I 시험설비는 엔진과 헬륨가압탱크를 제외한 공급계 전체와 지원설비로 이루어져 있다. PTA-I에서는 밸브, 제어기와 같은 단품에 대한 시스템 시험, 배관특성시험, 추진제 유량조절 시험, 배관부 압력 변동폭 및 주파수 특성 시험, 레귤레이터 성능 시험등을 수행하였다. PTA-I 시험을 통하여 구성단품에 대한 문제점을 발견하고 이를 수정보완 하였으며, 공급계 시스템의 설계 데이터와 시험데이터 비교를 통한 설계 검증을 완료하였다. PTA-I 시험의 결과는 PTA-II 및 연소시험을 수행하기 위한 시스템 구성에 적용하였다.

추진기관 시스템 시험설비 개발을 위한 해외사례 분석 및 적용방안 (A Study on International Case and Application for Propulsion System Test Complex)

  • 박주현;박순상;한영민;김지훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.96-99
    • /
    • 2012
  • 로켓 추진기관 시스템의 성능을 입증하기 위한 시험설비는 로켓시스템의 개발을 위한 필수 인프라이다. PSTC는 발사체의 각 단별 추진기관 시스템의 수류시험 및 연소시험을 수행하고, 발사 프로세스에 대한 지상검증을 수행한다. PSTC 개발을 위해 국내외 기술을 조사하여, 관련분야의 사례를 적극 활용한다. 추진기관 시험설비는 유공압 시설 및 제어계측, Test Stand, 화염유도로 등을 구성한다.

  • PDF

고전력 하이브리드 추진시스템의 전자파 적합성 설계 대책 (Design of the Electro-magnetic Compatibility(EMC) for Hybrid Electric Propulsion System)

  • 임종광;장교근
    • 한국군사과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.366-373
    • /
    • 2012
  • In this paper, serious changes in the electromagnetic environment with increasing power and energy capabilities for electric driving and military mission are discussed. Design and control strategies on the Electro-Magnetic Compatibility(EMC) for the series hybrid electric vehicle are proposed to minimize the effects of electromagnetic interferences.