• Title/Summary/Keyword: Propulsion Performance

Search Result 1,825, Processing Time 0.029 seconds

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant (부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구)

  • Kang, Suk-Jin;Kwon, Ky-Beom;Cho, Dong-Hyun;Lee, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.323-328
    • /
    • 2007
  • A direct application of liquefied gas propellants to a typical small satellite cold gas propulsion system was analyzed. Performance of systems using liquefied gas propellant under consideration was compared to that of a nitrogen cold gas propulsion system. Liquefied gas propellant propulsion system's performance, required tank volume, and required propulsion system mass has been calculated at the same mass, volume, and total impulse condition of a typical nitrogen cold gas propulsion system. It was found that the liquefied gas propulsion system has advantages in performance, volume, and mass, compared to a typical nitrogen cold gas system, and can be directly applied to a cold gas propulsion system.

A study of propulsion performance and propulsion system design for urban MAGLEV (자기부상열차 추진성능 분석 및 추진제어장치 개발)

  • Kim, Myong-Han;Han, Jeong-Soo;Chung, Eun-Sung;Kwon, Il-Dong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.93-97
    • /
    • 2011
  • This paper presents the performance and test results of propulsion system which is met the requirements of urban MAGLEV. The design of propulsion system should be considered the effect of attractive force by the magnetic levitation and train running resistance. In this paper, the tractive and braking thrust are calculated and the train performance is simulated for the service track. Finally the test results of complete car are shown to verify the performance.

  • PDF

Dynamic Performance Simulation of the Propulsion System for the CRW Type UAV Using $SIMULINK^{\circledR}$

  • Changduk Kong;Park, Jongha;Jayoung Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.499-505
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including straight bent ducts, tip-jet nozzles, a master valve and a variable main nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. In this study, in order to operate safely the propulsion system, the dynamic Performance behavior of the system was modeled and simulated using the SIMULIN $K^{ }$, which is the user-friendly GUI type dynamic analysis tool provided by MATLA $B^{ }$. In the transient performance model, the inter-component volume model was used. The performance analysis using the developed models was performed at various flight condition, valve angle positions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the inlet temperature overshoot limitation as well as the compressor surge margin. Performance analysis results using the SIMULIN $K^{ }$ performance program were compared with them using the commercial program GSP.m GSP.

  • PDF

Study on the Propulsion System Integration Optimization for a Turboprop Aircraft (터보프롭 항공기 추진기관 시스템 종합 최적 설계 연구)

  • 공창덕;김진원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.71-81
    • /
    • 1995
  • The Propulsion System Integration can be defined as the optimization technology of combining the propulsion system components with the airframe to achieve the overall aircraft misson performance goals. The disposition of propulsion system components on engine compartment enveloped by front fuselage and fire bulkhead is very restricted because of the interference with nose L/G and engine mountig strut. The design of components depends on the traditional technical data base. The engine satisfying a customer's ROC was selected among worldwide existing engines by the comparision studies of performance analysis with enigine installed effect, future growth potential, ILS, and application to aircrafts, etc. The ground test of the propulsion system integration was performed in the test cell and on the aircraft to assure the function of the components. The flight test was performed to confirm complying the performance requirements.

  • PDF

Effects of Manual Wheelchairs' Transmission on the Propulsion Motion (수동휠체어의 변속 기능이 추진 동작에 미치는 영향)

  • Shin, Eung-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.225-232
    • /
    • 2007
  • This work intends to investigate the effects of shift characteristics on the propulsion performance of a manual wheelchair with an automatic transmission. A planetary gear train is employed to generate a two-stage shift automatically, based on the distance traveled from rest. Motion analysis has been performed for measuring kinematic properties of the arm and then the inverse dynamics has been applied for estimating joint forces/torques. Then, a parametric study has been performed to find a set of the shift ratios and the shift intervals for optimizing propulsion performance. Results show that the propulsion performance is closely related to the shift condition. It is found that a short shift interval is desirable for a short distance propulsion. However, an optimum shift interval for a long distance propulsion is inversely proportional to the shift ratio approximately. Consequently, the automatic transmission can greatly lower the joint loadings by the speed reduction, which eventually contribute to prevent joint injuries of wheelchair users.

Investigation on the Powering Performance Prediction for Azimuth Thrusters

  • Van, Suak-Ho;Yoon, Hyun-Se
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Recently, the application of the electric propulsion system becomes popular because of its advantage over conventional propulsion. However, the complicated flow mechanism and interaction around the azimuth thruster are not fully understood yet, and the studies on the powering performance characteristics with azimuth/pod thrusters are now in progress. The experimental method developed in KRISO(Korea Research Institute of Ships & Ocean Engineering) is introduced and the results of the powering performance tests, consisting of resistance, self-propulsion and propeller open water tests for a cable layer with two azimuth thrusters are presented. For the analysis of powering performance with azimuth thrusters, it is necessary to evaluate the thrust/drag for components of a thruster unit, Extrapolation results could differ according to the various definitions of the propulsion unit; that is the pod, thruster leg and/or nozzle can be treated as hull appendages or as part of propulsion unit, The powering performances based on several definitions are investigated for this vessel. The results of the measurements for the 3-dimensional velocity distribution on the propeller plane are presented to understand the basis of the difference in propulsion characteristics due to the propeller rotational directions.

The Performance Evaluation of C/SiC Composite for Rocket Propulsion Systems (추진기관용 C/SiC 복합재료의 특성 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.433-438
    • /
    • 2009
  • The main objective of this research effort is to develop the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The high performance and reliability of C/SiC composite are proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model is originated.

  • PDF

A Study on Performance Simulation of Propulsion System for KT-1 (KT-1 기본 훈련기의 추진기관 비행성능 해석연구)

  • 오성환;장현수;기덕종
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.225-229
    • /
    • 2003
  • The exact performance simulation of propulsion system is a key element in the prediction of the aircraft performance. The specification performance analysis using the installed loss of KT-1 showed a large difference with the engine performance measured during the flight tests. This indicates that a method to estimate the more exact performance is needed. The study on the performance simulation with performance map correction along the engine operating line shows the good consistent results through all the flight conditions and engine conditions. The correction factors of the map were resulted from the comparative analysis between the flight test and the simulation of installed engine performance.

  • PDF

SHIP RESISTANCE AND PROPULSION PERFORMANCE TEST USING HYBRID MESH AND SLIDING MESH (Hybrid mesh 및 sliding mesh를 이용한 선박 저항추진 성능 시험)

  • Park, Bum-Jin;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, we conducted resistance and propulsion performance test of ship composed of the Resistance Test, Propeller Open Water Test and Self Propulsion Test using the CFD(Computational Fluid Dynamics). We used commercial RANS(Reynolds Averaged Navier Stokes equation) solver, as a calculating tool. The unstructured grids were used in a bow and stern of ship, having complex shape, for a convenience of generating grids, and the structured grids were adopted in a central hull and rest of hull having a relatively simple shape which is called hybrid grid method. In addition, The sliding mesh method was adopted to rotate a propeller directly in the Propeller Open Water and Self Propulsion Test. The Resistance Test and Self Propulsion Test were calculated using Volume of Fluid (VOF) model and considering a free surface. And all The three cases were applied realizable k-epsilon model as the turbulence model. The results of calculations were verified for the suitability of calculations by comparing MOERI's EFD results.

  • PDF