• Title/Summary/Keyword: Proposed PSS

Search Result 154, Processing Time 0.026 seconds

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

Design of GA-Fuzzy Precompensator for Enhancement of Power System Stability (전력시스템의 안정도 향상을 위한 GA-퍼지 전 보상기 설계)

  • Chung, Mun-Kyu;Kim, Sang-Hyo;Chung, Hyeng-Hwan;Lee, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.137-139
    • /
    • 2001
  • In this paper, we design a GA-fuzzy precompensator for enhancement of power system stability. Here, a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for Power System Stabilizer(PSS). This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, name1y, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF

A LQG based PSS design for controlling SSR in power systems with series-compensated lines (LQG 제어방식을 이용한 직렬 커패시터 보상선로의 SSR 제어용 PSS의 설계)

  • Seo, Jang-Cheol;Kim, Tae-Hyun;Moon, Seung-Ill;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.72-74
    • /
    • 1994
  • This paper presents a linear quadratic gaussian(LQG) based power system stabilizer(PSS) to control subsynchronous resonance(SSR) that occurs in a series capacitor compensated power systems. The complete SSR system based on the IEEE first benchmark model is employed in this study. Eigenvalue analysis and time domain simulations using a nonlinear system model show that the proposed PSS controls SSR efficiently.

  • PDF

Optimal Design of Power System Stabilizer Using IA-QFT (IA-QFT를 이용한 전력계통 안정화 장치의 최적 설계)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Ju, Su-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.441-450
    • /
    • 2002
  • In this paper, optimal tuning problem of power system stabilizer using IA-QFT is investigated to improve power system dynamic stability in spite of parameter variation and disturbance uncertainties. The most important feature of QFT is that it is able to deal with the design problem of complicated uncertain plants. However, loop shaping is currently performed in computer aided design environments manually and it is usually a trial and error procedure. It is difficult to design a controller to satisfy all specifications manually. To solve this problem, a study of design automation using IA needs to be taken into account. The robustness of the proposed controller has been investigated on a single machine infinite bus model. The results are shown that the proposed PSS using IA-QFT is more robust than conventional PSS.

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

The Analysis of Vibration Due to Magnetic Exciting Force in the Brushless DC Motor (다기 전력 시스템 동적 안정도 향상을 위한 분산 제어 기반 PSS 및 TCSC 제어기 설계)

  • Lee, Seung-Cheol;Seo, Jang-Cheol;Moon, Seung-Ill;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • This paper deals with decentralized control scheme and its application to multi-machine power systems. Decentralized control scheme has several practical advantages, because power system has geographically distributed characteristics. In this paper, decentralized observer-based optimal Power System Stabilizer(PSS) and Thyristor-Controlled Series Capacitor(TCST) controller are designed and tested in WSCC 9 bus system with one TCSC installed. Simulation results show that the proposed decentralized controller has satisfactory performances comparable to the centralized controller. In addition, using modal analysis, this paper shows that the proposed decentralized controller significantly affects only one pair of eigenvalues which have high participation with each generator, while slightly affects other eigenvalues. This result indicates that the application of the decentralized control scheme to enhance power system dynamic stability via excitation control have potential advantages because each low-damped mode occurs dominantly by each decentralized subsystem.

  • PDF

Power System Rotor Angle Stability Improvement via Coordinated Design of AVR, PSS2B, and TCSC-Based Damping Controller

  • Jannati, Jamil;Yazdaninejadi, Amin;Nazarpour, Daryush
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.341-350
    • /
    • 2016
  • The current study is dedicated to design a novel coordinated controller to effectively increase power system rotor angle stability. In doing so, the coordinated design of an AVR (automatic voltage regulator), PSS2B, and TCSC (thyristor controlled series capacitor)-based POD (power oscillation damping) controller is proposed. Although the recently employed coordination between a CPSS (conventional power system stabilizer) and a TCSC-based POD controller has been shown to improve power system damping characteristics, neglecting the negative impact of existing high-gain AVR on the damping torque by considering its parameters as given values, may reduce the effectiveness of a CPSS-POD controller. Thus, using a technologically viable stabilizer such as PSS2B rather than the CPSS in a coordinated scheme with an AVR and POD controller can constitute a well-established design with a structure that as a high potential to significantly improve the rotor angle stability. The design procedure is formulated as an optimization problem in which the ITSE (integral of time multiplied squared error) performance index as an objective function is minimized by employing an IPSO (improved particle swarm optimization) algorithm to tune adjustable parameters. The robustness of the coordinated designs is guaranteed by concurrently considering some operating conditions in the optimization process. To evaluate the performance of the proposed controllers, eigenvalue analysis and time domain simulations were performed for different operating points and perturbations simulated on 2A4M (two-area four-machine) power systems in MATLAB/Simulink. The results reveal that surpassing improvement in damping of oscillations is achieved in comparison with the CPSS-TCSC coordination.

Structural Studies upon the Interactive Effects between Organic Dyestuffs and Polyelectrolytes (I). The Stacking Effect of Methylene Blue and Acridine Orange (유기색소분자와 전해질고분자 사이의 상호작용 효과에 관한 구조론적 연구 (I). Methylene Blue 및 Acridine Orange의 Stacking 효과)

  • Chong Hoe Park;Dae Hyun Shin;Sock Sung Yun;Moo Soon Park;Hong Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.289-295
    • /
    • 1986
  • Spectroscopic studies have been carried out on the metachromatic behavior of methylene blue(MB) and acridine orange(AO) in the presence of polyvinylsulfate(PVS) and polystyrenesulfonate(PSS) The characteristic changes of meta-band with the change of P/D value are discussed in terms of stacking theory. It has been found that the stacking effect in the PVS-dye system is stronger than that in the PSS-dye system and that MB shows stronger stacking effect than AO. A stacking model and dimension of bound dyes on the surface of polymer chain is proposed on the basis of the previously suggested model of dimer found in the aqueous solution of planar aromatic dyes. The proposed model is found to be reasonable in accordance with the experimental results obtained by various workers.

  • PDF

Power Support Device (PSD) Based Authentication Protocol for Secure WiBro Services (안전한 WiBro 서비스를 위한 PSD(Power Support Device) 기반 인증 프로토콜)

  • Lee, Gi-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.727-733
    • /
    • 2008
  • An authentication between a user's terminal and a Access Control Router (ACR) is preceded so that a user receives secure WiBro services. Otherwise they can be exposed from many attack risks. So the Telecommunications Technology Association (TTA) constituted a mechanism of the mutual authentication for WiBro service. In mechanism a user executes the mutual authentication between a Portable Equipment (PE) and the ACR by using Portable Internet Subscriber Identity Module (PISIM). But this standard needs many message to authenticate the ACR and the users cann't use wireless Internet service. Therefore in this paper we propose the key agreement protocol between the PSS and the ACR to authenticate the PSS to ACR. At this time Power Support Device (PSD) fer supporting the calculated quantity of the PSS is participated in the key agreement protocol. The ACR sends a generated key to Key Authentication Server (KAS) via secure IPsec tunnel and then it preserves the identity of the PSS and the value of key after it enciphered them. In conclusion we analyze the security and efficiency of the proposed protocol.