• Title/Summary/Keyword: Proportional-integral (PI) compensator

Search Result 8, Processing Time 0.022 seconds

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

The Rebalance Loop Design with an Input Compensator for a Dynamically Tuned Gyroscope (직렬 공진형 콘버터의 새로운 제어방)

  • 정규범;이춘택;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • In this paper, a new technique, which uses an "input compensator", is proposed to design a controller for the rebalance loop of a Dynamically Tuned Gyroscope (DTG) and the performance of this new controller is compared with that of a Proportional and Integral (PI) controller through simulation. The rebalance loop is an essential part of a DTG` it is composed of a controller, low-pass filters, notch filters and torque drivers. Among them, the controller is the main attributor to determine the performance of the rebalance loop. Through simulation, it is concluded that the performance of the newly designed controller is better than that of a PI controller in the point of (1) low maximum overshoot, (2) short settling time and (3) small steady state error.

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.

A realization Fuzzy PI and Fuzzy PD Controller using a compensation Fuzzy Algorithms

  • Kim, Seung-Cheol;Choo, Yeon-Gyu;Kang, Shin-Chul;Lim, Young-Do;Park, Boo-Kwi;Lee, Ihn-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.4-101
    • /
    • 2002
  • I. Introduction ▶The PID(Proportional-Integral-Derivative) controller is widely used in the industry it can be implemented easily for a typical second order plant. ▶The parameters of PID controller should be adapted complicatedly if a plant is various or the load is present. ▶For solving the problem, many control techniques have been developed. ▶A major method is a hybrid Fuzzy-PID controller. But, in case of using this method, we can not obtain characteristic of rapidly response and not achieved compensation on disturbance. ▶Therefore, we will use compensator fuzzy controller a front Hybrid type fuzzy-PID controller...

  • PDF

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.