• Title/Summary/Keyword: Proportional-integral (PI)

Search Result 206, Processing Time 0.024 seconds

A Modular Disturbance Observer-based Cascade Controller for Robust Speed Regulation of PMSM

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1663-1674
    • /
    • 2017
  • This paper deals with the robust speed regulation of a surface-mounted permanent magnet synchronous motor (SPMSM) that is subject to parametric uncertainties and external disturbances. The proposed approach retains a conventional cascade control configuration composed of an outer-loop speed control module and inner-loop current control modules. Baseline proportional-integral (PI) controllers are designed for nominal modular systems without accounting for the uncertainties to set a desired control performance of the closed-loop system. After studied in both frequency and time domains, a reduced-order proportional-integral observer (PIO), as a modular disturbance observer, is incorporated with each control module to maintain the ideal performance of the modules. Theoretical analysis confirms the desired performance recovery of the augmented system with modular PIOs to the nominal system. Comparative computer simulations and experimental results validate the proposed cascade control method for SPMSM speed regulation.

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

Speed Control of Induction Machine with Fuzzy PI Controller using MATLAB/SIMULINK (MATLAB/SIMULINK를 이용한 유도전동기 퍼지 PI제어기의 속도제어)

  • 이학주
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.211-214
    • /
    • 2000
  • The conventional PI controller has been widely used in industrial application due to the simple control algorithm. But it is very difficult to find the optimal PI control gain. Therefore in this paper to obtain optimal performance fuzzy proportional-plus-integral controller for the vector control system of an induction machine is presented. The simulation model is created in MATLAB/SIMULINK. The simulation results demonstrate the good performance of this system.

  • PDF

Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth;Ngamroo Issarachai;Runggeratigul Suwan;Tantaswadi Prinya
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2006
  • This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

Electrohydraulic Pump-Driven Closed-Loop Blood Pressure Regulatory System

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2007
  • An electrohydraulic (EH) pump-driven closed-loop blood pressure regulatory system was developed based on flow-mediated vascular occlusion using the vascular occlusive cuff technique. It is very useful for investigating blood pressure-dependant physiological variability, in particular, that could identify the principal mediators of renal autoregulation, such as tubuloglomerular feedback (TGF) and myogenic (MYO), during blood pressure regulation. To address this issue, renal perfusion pressure (RPP) should be well regulated under various experimental conditions. In this paper, we designed a new EH pump-driven RPP regulatory system capable of implementing precise and rapid RPP regulation. A closed-loop servo-controlwas developed with an optimal proportional plus integral (PI) compensation using the dynamic feedback RPP signal from animals. An in vivo performance was evaluated in terms of flow-mediated RPP occlusion, maintenance, and release responses. Step change to 80 mmHg reference from normal RPP revealed steady state error of ${\pm}3%$ during the RPP regulatory period after PI action. We obtained rapid RPP release time of approximately 300 ms. It is concluded that the proposed EH RPP regulatory system could be utilized in in vivo performance to study various pressure-flow relationships in diverse fields of physiology, and in particular, in renal autoregulation mechanisms.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

A Study of the PI Controller and the PR Controller for Parallel Operation of Single-Phase AC/DC Converters (단상 AC/DC 컨버터의 병렬운전을 위한 비례 적분 제어기와 비례 공진 제어기에 관한 연구)

  • Kim, Jung-Min;Choi, Seong-Chon;Kim, Bum-Jun;Cho, Jin-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.61-62
    • /
    • 2016
  • It is the general trend that AC/DC power system topologies with various sources and loads. To control the AC/DC power system, different kind of control system are needed. This paper discusses the parallel operation of single-phase AC/DC converters using a proportional integral (PI) controller and a proportional resonant (PR) controller. The performance of PI and PR controller have been evaluated by simulation.

  • PDF