• Title/Summary/Keyword: Proportional roulette wheel selection

Search Result 1, Processing Time 0.015 seconds

Evaluating the Performance of Four Selections in Genetic Algorithms-Based Multispectral Pixel Clustering

  • Kutubi, Abdullah Al Rahat;Hong, Min-Gee;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.151-166
    • /
    • 2018
  • This paper compares the four selections of performance used in the application of genetic algorithms (GAs) to automatically optimize multispectral pixel cluster for unsupervised classification from KOMPSAT-3 data, since the selection among three main types of operators including crossover and mutation is the driving force to determine the overall operations in the clustering GAs. Experimental results demonstrate that the tournament selection obtains a better performance than the other selections, especially for both the number of generation and the convergence rate. However, it is computationally more expensive than the elitism selection with the slowest convergence rate in the comparison, which has less probability of getting optimum cluster centers than the other selections. Both the ranked-based selection and the proportional roulette wheel selection show similar performance in the average Euclidean distance using the pixel clustering, even the ranked-based is computationally much more expensive than the proportional roulette. With respect to finding global optimum, the tournament selection has higher potential to reach the global optimum prior to the ranked-based selection which spends a lot of computational time in fitness smoothing. The tournament selection-based clustering GA is used to successfully classify the KOMPSAT-3 multispectral data achieving the sufficient the matic accuracy assessment (namely, the achieved Kappa coefficient value of 0.923).