• Title/Summary/Keyword: Proportional directional control valve

Search Result 16, Processing Time 0.023 seconds

Dynamic Characteristics of a Hydraulic Fishing Winch Simulator (유압식 어로 윈치 시뮬레이터의 동적 거동 특성)

  • LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

Synchronization Control of Two Hydraulic Cylinders Using Feedback Linearization Compensator and Disturbance Observer (피드백 선형화 보상기와 외란 관측기를 이용한 2개 유압 실린더의 동기 제어)

  • Kam, J.S.;Oh, D.H.;Lee, I.Y.;Kim, J.W.;Lee, H.C.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.14-20
    • /
    • 2013
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to the synchronization control of two hydraulic cylinders. The hydraulic system consists of a proportional directional control valve with overlap characteristic near the neutral position, a conventional hydraulic cylinder and an external load. The control performances of the system were verified through numerical simulations. From the simulations, it was ascertained that excellent control performances were obtained with the suggested control strategy.

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

Motion Control of a Single Rod Cylinder-Load System Driven by a Proportional Directional Control Valve (비례방향제어밸브에 의해 구동되는 차동 실린더 부하계의 운동제어)

  • Lee, M.W.;Cho, S.H.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.81-85
    • /
    • 2010
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

  • PDF

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.