• Title/Summary/Keyword: Proportional and integral controller

Search Result 399, Processing Time 0.027 seconds

A Study on the Robust Speed Controller of Induction Motor (유도전동기의 강인 속도 제어기에 관한 연구)

  • Byun, Hwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.612-615
    • /
    • 1997
  • In this paper, a robust speed controller considering the effect of uncertainty (plant parameter variation. external load disturbance. unmodeled and nonlinear dynamics etc..) for induction motor is proposed. Firstly. the dynamic model at nominal case of induction motor is estimated. Based on the estimated model. the IPSC ( Integral - Proportional Speed Controller) is designed. Then a DTRC (Dead-time Robust Controller) combining DTC ( Dead-time Compensator) & SRC (Simple Robust Controller) is designed to reduce the effects of parameter variation and external disturbance. Some simulated results are provided to demonstrate the effectiveness of the proposed controller.

  • PDF

I-P Controller Design for Quadruple-Tank System

  • Suksri, Tianchai;Kongratana, Viriya;Numsomran, Arjin;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1862-1866
    • /
    • 2003
  • A control system design with Coefficient Diagram Method (CDM) is proven that effective for SISO control design. But the control system design for MIMO via CDM is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CDM. By using the decentralized method for both non-minimum phase and minimum phase are made. The results from Integral-Proportional (I-P) controller’s design via CDM and standard Proportional-Integral (PI) controls are also shown to compare the merits of the proposed controllers.

  • PDF

Remote control of Drum/Chute mechanism in a concrete mixer-truck (콘크리트 믹서 트럭에서의 드럼 및 슈트의 원격 제어)

  • Lee, M.C.;Son, K.;Jeong, W.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 1993
  • A remote control system was developed in order to operate by push-buttons the conventional drum and chute components, which have been operated manually, in a concrete mixer-truck. As actuators, a hydraulic power unit was used for chute operations: two DC motors for drum operations. The devised drum controller consisted of three electric circuits : an analog proportional-integral control circuit, a drum acceleration circuit, and an emergency stop circuit. The remote control system was installed to be tested experimentally and then was evaluated to work successfully with a desirable accuracy.

  • PDF

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

A Study on Speed Control of Induction Motor using Space Vector PWM (공간벡터 PWM을 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Young-Gon;Choi, Jung-Hwan;Lee, Seung-Hwan;Kim, Sung-Nam;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.476-478
    • /
    • 1996
  • This paper is on speed control of induction motor using space vector PWM. Indirect vector control which controls independantly flux and torque current component in order to drive induction motor, is applied for driving motor. Voltage sourced inverter with space vector PWM is used to generate the practically perfect sinusoidal flux density in induction motor. The appropriateness of speed control is proven by appling IP(Integral-proportional) controller which is known to have a good speed response and still to have less overshoot than the now used PI(Proportional-Integral) controller.

  • PDF

Robust Position Control of One DOF Mechanical Systems Using Dual PIOs Without Velocity Measurement

  • Han, Minsoo;Lee, Cho Won;Yook, Joo-Hyoung;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.356-362
    • /
    • 2017
  • This paper presents a robust position controller for a one degree-of-freedom (DOF) mechanical system using only position measurement. In order to alleviate the performance degradation owing to various uncertainties, a two-stage design method is studied by employing a proportional integral observer (PIO). In the first stage, a baseline backstepping controller is designed for a nominal system without accounting for uncertainties. The PIO is developed for estimating both the velocity information for the backstepping controller and an equivalent input disturbance for a feedforward compensation using the estimated uncertainty. It is shown that the estimation errors with the proposed PIO can be made arbitrarily small in a finite time. If the system suffers from undesirable actuator nonlinearities, however, it might be necessary to estimate the velocity and the disturbance with different rates of convergence. The proposed method combines the predesigned backstepping controller and dual PIOs to reduce mechanical vibrations as well as steady-state errors. The performance of the proposed method is tested through comparative computer simulations and experiments using a laboratory prototype.

Performance Improvement of Active Queue Management for Internet Routers

  • Lim, Hyuk;Park, Kyung-Joon;Park, Eun-Chan;Park, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.1-77
    • /
    • 2001
  • In this paper, we propose a control scheme for improving the performance of a conventional Proportional-Integral (PI) controller for Active Queue Management (AQM) supporting TCP flows. When the PI controller is used for AQM, the windup phenomenon of the integral action causes the performance degradation. Therefore we model AQM as a system with a saturator and apply anti-windup methods to the PI controller for AQM. We compare the performances of anti-windup algorithm with the conventional PI controller through ns simulations. The simulation results show that the PI controller with anti-windup method performs better than the conventional PI controller.

  • PDF

Motion Synchronization of Control for Multi Electro-Hydraulic Actuators (가변구조제어기를 이용한 다중실린더 위치동조 제어)

  • Kim, Seong-Hoon;Seo, Jeong-Uk;Yoon, Young-Won;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.

Design of Advanced Multi-loop PI Controller for Multi-delay Processes (다중 시간지연 공정을 위한 개선된 다중루프 PI 제어기 설계)

  • Vu, Truong Nguyen Luan;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • An analytical method for robust design of the multi-loop proportional-integral (PI) controller is proposed for various types of multi-delay processes. On the basis of the direct synthesis and generalized IMC-PID approach, the analytical tuning rules of the multi-loop PI controller are firstly derived for achieving the desired closed-loop response, and the structured singular value synthesis is then utilized for the tradeoffs between the robust stability and performance by adjusting only one design parameter (i.e., the closed-loop time constant). To verify the superiority of the proposed method, the simulation studies have been conducted on a wide variety of multivariable processes. The multi-loop PI controller designed by the proposed method shows a fast, well-balanced and robust response with the minimum integral absolute error (IAE) in compared with other renowned methods.