• Title/Summary/Keyword: Proportional Pressure Reducing

Search Result 28, Processing Time 0.032 seconds

Pressure Control Characteristics of Proportional Pressure Reducing Valve (비례감압밸브의 압력제어특성)

  • Yun, S.N.;Ham, Y.B.;Jo, J.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.68-73
    • /
    • 2003
  • The purpose of this study is to develop a new proportional pressure reducing valve and to verify the validity of a new mechanism with pressure control pin. The dynamic characteristics of the object pressure reducing valve was studied by numerical analysis of the mathematical model. Also, static and dynamic characteristics of the new pressure control valve were tested with a testing system based on the test standard.

  • PDF

Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control (Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발)

  • 홍예선;류시복;김영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

A Study on Characteristics of Dump and Reducing Valve for Hydraulic Remote Control System (유압원격제어를 위한 덤프와 감압밸브의 특성에 관한 연구)

  • Oh, Cheoul-Hwan;Kim, Kwang;Song, Chang-Seoup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.81-90
    • /
    • 1988
  • In recent, the requirement of remote control of hychaulic system is in- creasing. The actuator unit whose output position is proportional to input electrical signal needs a pressure reducer and a dump valve. The pressure reducer provides a constant regulated pressure and filters contaminants. The dump valve supplies proper pressure to the pressure reducer and unloads when the system is not operated. In this thesis, dump valve and pressure reducer with auxiliary function are studied. The choke in the pressure reducer prevents actuator from supplying higher pressure than necessary pressure at beginning, and the spring constant affects on the dynamic characterisics. In dump valve, it is proved that diameter of servo-slide hold and choke diameter of dump plunger affects on damping response.

  • PDF

Effect of powder activated carbon replacement on HCPAC-MBR system operation (고농도 분말활성탄 결합 MBR 운전에 대한 활성탄 교체주기의 영향)

  • Lee, Chae-Ha;Kim, Jin-Tae;Lee, Jung-Hyun;Seo, Gyu-Tae;Kim, In S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to evaluate the effect of PAC(Powder Activated Carbon) retention time on stable operation of high concentration powered activated carbon(HCPAC-MBR) in the treatment of secondary domestic wastewater. The pilot scale HCPAC-MBR system was operated at two different SRTs, 25 days and 100 days. The main drawback of HCPAC-MBR system was the rapid increase of trans-membrane pressure. The increase rate of trans-membrane pressure was proportional to SRT value at constant flux. This result seemed to be caused by reduced amount of EPS adsorbed on the PAC in the reactor by decreasing the SRT of the PAC. The particle size of the PAC was also influenced by SRT. The PAC size was decreased as SRT was increased. The change of particle size could be one reason for the change of trans-membrane pressure. The pore volume in the cake-layer formed on the membrane surface became to be increased by reducing SRT, because the cake-layer was highly composed of the PAC. Therefore, increased pore volume might play a role to reduce the trans-membrane pressure. The removal rate of E260 and TOC was also inversely proportional to SRT value.

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

Development of the Auto-Aging Test Controller for a Hydraulic Motor (유압모터 길들이기 자동시험 제어기 개발)

  • Jung, Gyu Hong;Shin, Dae Young;Seo, Dong Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 2015
  • Because heavy-duty construction vehicles such as excavators are required for good engine-room cooling capacity, a hydraulic gear motor is adopted in the cooling fan drive mechanism to actively control the output speed, instead of adopting the conventional ON/OFF type belt drive. While gear motors are normally limited to 140bars of operating pressure, those for the cooling fan are capable of operating at continuous pressures of up to 220bars. After assembly, all gear motors for high pressure must pass an aging test which is a kind of the wearing process between the gear teeth and motor housing. During the aging process with gradual pressure increments, gear sticking sometimes occurs due to abnormal wear, resulting in defects. This paper focuses on a gear-sticking free aging test controller that is designed together with the knowledge of an experienced operator and the analysis results of experimental data of the gear jamming phenomenon. From the aging experiment, it is demonstrated that the developed controller that can alter the setting pressure of the load pump is effective for stabilizing the abrupt increase in the motor input pressure, thus preventing the hydraulic motor from stopping. This is expected to be helpful for the reduction of defects and increase in productivity.

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Modeling and Simulation of an EPPR Valve Coupled with a Spool Valve

  • Khan, Haroon Ahmad;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2019
  • EPPR (Electro-hydraulic Proportional Pressure Reducing) valves are pressure control valves. In this study, an independent metering valve (IMV), which is a combination of a spool valve opened and closed with the help of an EPPR valve, was discussed. The overall performance of the valve (IMV) was obtained by the respective modeling and simulation of the system. The valve investigated in this study is to be used for independent metering of hydraulic excavator actuator e.g. boom, arm, bucket etc. To design the model, continuity equations and force balance equations were used. The set of differential equations were then simulated in Simulink using ODE45 option in the configuration toolbox. The valve has to be able to control the flow rate going in and out of the cylinder separately, which is why the particular configuration was needed and selected.