• Title/Summary/Keyword: Proportional Integral

Search Result 582, Processing Time 0.03 seconds

A History of the Common Logarithmic Table with Proportional Parts (상용로그표의 비례부분에 대한 역사적 고찰)

  • Kim, Tae Soo
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.409-419
    • /
    • 2014
  • In school mathematics, the logarithmic function is defined as the inverse function of an exponential function. And the natural logarithm is defined by the integral of the fractional function 1/x. But historically, Napier had already used the concept of logarithm in 1614 before the use of exponential function or integral. The calculation of the logarithm was a hard work. So mathematicians with arithmetic ability made the tables of values of logarithms and people used the tables for the estimation of data. In this paper, we first take a look at the mathematicians and mathematical principles related to the appearance and the developments of the logarithmic tables. And then we deal with the confusions between mathematicians, raised by the estimation data which were known as proportional parts or mean differences in common logarithmic tables.

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Fluid Film Journal Bearing (능동 제어 유체 윤활 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • No, Byeong-Hu;Kim, Gyeong-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.116-121
    • /
    • 2001
  • The paper presents the dynamic characteristics of a rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional. derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axial groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The proportional control increases the stability threshold without affecting the whirl ratio. However, for the derivative control of the bearing, increase of stability threshold speed is accompanied by a parallel reduction of the whirl ratio. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results 7how the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

Reference Stress Based J-Integral Estimates Along the Semi-Elliptical Surface Crack Front (반타원 표면균열 선단을 따른 참조응력 기반의 J-적분 예측)

  • Kim, Jin-Su;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.701-708
    • /
    • 2004
  • This paper discusses applicability of the enhanced reference stress method to estimate J-integral along the semi-elliptical surface crack front. It is found that angular variations of normalized J­integral are strongly dependent on the geometry, loading mode and loading magnitude. As application of the reference stress approach to semi-elliptical surface cracks implies proportional increases in the normalized J-integral, the present results pose a question in applicability of the reference stress approach. However, investigation of the error in the estimated J-integral in the present work suggests that the enhanced reference stress approach, recently proposed by authors, provides an effective engineering tool fur estimating crack driving force along the semi-elliptical surface crack front.

Comparison and Evaluation of Anti-Windup PI Controllers

  • Li, Xin-Lan;Park, Jong-Gyu;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • This paper proposes a method for comparing and evaluating anti-windup proportional-integral (PI) control strategies. The so-called PI plane is used and its coordinate is composed of the error and the integral state. In addition, an anti-windup PI controller with integral state prediction is proposed. The anti-windup scheme can be easily analyzed and evaluated on the PI plane in detail. Representative anti-windup methods are experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-source inverter (VSI). The experimental results compare the anti-windup PI controllers. It is empathized that the initial value of the integral state at the beginning of the linear range dominates the control performance in terms of overshoot and settling time.

Hydraulically Actuated of Half Car Active Suspension System

  • Sam, Yahaya Md.;Osman, Johari Halim Shah
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1721-1726
    • /
    • 2004
  • The studies of the half active suspension have been performed using various suspension models. In the early days, the modeling considered the inputs to the active suspension as the linear forces. Recently, due to the development of new control theory, the forces input to the half car active suspension system has been replaced by an actual input to the hydraulic actuators. Therefore, the dynamic of the active suspension system now consists of the dynamic of half car suspension system plus the dynamic of the hydraulic actuators. This paper proposed a new modeling technique in integrating both dynamic models. The proportional integral sliding mode control technique is utilized to control the hydraulically actuated of the half car active suspension system. The performance of the half car hydraulically actuated active suspension system is simulated with a bump input. The results show that the proposed modeling technique and the proportional integral sliding mode controller are improved the ride comfort and ride handling of the half car active suspension system.

  • PDF

I-P Controller Design for Quadruple-Tank System

  • Suksri, Tianchai;Kongratana, Viriya;Numsomran, Arjin;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1862-1866
    • /
    • 2003
  • A control system design with Coefficient Diagram Method (CDM) is proven that effective for SISO control design. But the control system design for MIMO via CDM is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CDM. By using the decentralized method for both non-minimum phase and minimum phase are made. The results from Integral-Proportional (I-P) controller’s design via CDM and standard Proportional-Integral (PI) controls are also shown to compare the merits of the proposed controllers.

  • PDF

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

A Study on Speed Control of Induction Motor using Space Vector PWM (공간벡터 PWM을 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Young-Gon;Choi, Jung-Hwan;Lee, Seung-Hwan;Kim, Sung-Nam;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.476-478
    • /
    • 1996
  • This paper is on speed control of induction motor using space vector PWM. Indirect vector control which controls independantly flux and torque current component in order to drive induction motor, is applied for driving motor. Voltage sourced inverter with space vector PWM is used to generate the practically perfect sinusoidal flux density in induction motor. The appropriateness of speed control is proven by appling IP(Integral-proportional) controller which is known to have a good speed response and still to have less overshoot than the now used PI(Proportional-Integral) controller.

  • PDF

Steady State and Dynamic Response of a State Space Observer Based PMSM Drive with Different Controllers

  • Gaur, Prerna;Singh, Bhim;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.280-290
    • /
    • 2008
  • This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative), SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the controllers.