• Title/Summary/Keyword: Proportional Integral

Search Result 582, Processing Time 0.025 seconds

Online State-of-Charge Estimation Algorithm Using Proportional-Integral Observer (비례적분 관측기를 이용한 실시간 잔존용량 추정 알고리즘)

  • Kim, Nari;Ahn, Jung-Hoon;Lee, Byung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.13-14
    • /
    • 2015
  • 본 논문은 추정 정확도를 높이기 위해 비례적분 관측기를 이용한 실시간 잔존용량 추정 알고리즘을 제안한다. 시뮬레이션을 통해 제안하는 알고리즘의 타당성을 검증하였고, 초기 잔존 용량이 불명확하거나 배터리 모델 파라미터 값이 실제와 일치하지 않더라도 평균 추정오차는 0.3% 미만으로 확인되었다.

  • PDF

Conventional versus Fuzzy Control : Performance Evaluation for Lightweight Cartesian Robot Arms

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.5-49
    • /
    • 2001
  • The Proportional-Integral-Derivative control scheme is widely used in industries. This paper investigates an alternative control paradigm for controlling lightweight Cartesian robot arms. Fuzzy PI control is used and validated experimentally by comparing performance with a conventional PID control algorithm. The results show the effectiveness of the fuzzy PI control. The fuzzy control shows superior performance in transient response over the conventional one.

  • PDF

Speed Control of Induction Machines Using Fuzzy Algorithm with Hierarchical Structure

  • Lee, Ho-Seok;Cho, Soon-Bong;Hyun, Dong-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.101-108
    • /
    • 1996
  • A new speed controller based on the fuzzy algorithm with hierarchical structure is presented. The input variables of the controller are speed error and its derivative(change of error), where the output variable is the change of torque current command. Several comparisons were performed with conventional PI (proportional plus integral) controller and proposed controller. These controllers are applied to the laboratory model drive system with 2.2kW induction motor. Some simulation and experimental results show that the speed controller using fuzzy algorithm is more robust than the conventional PI controller.

  • PDF

A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow- (경계적분방정식의 수치해법 -축대칭 유동-)

  • Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 1990
  • A numerical solution method of the boundary integral equation for axisymmetric potential flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths of ring source and ring vorticity are approximated by linear functions of a parameter $\zeta$ on a segment. The geometry of the body is represented by a cubic B-spline. Limiting integral expressions as the field point tends to the surface having ring source and ring vorticity distribution are derived upto the order of ${\zeta}ln{\zeta}$. In numerical calculations, the principal value integrals over the adjacent segments cancel each other exactly. Thus the singular part proportional to $\(\frac{1}{\zeta}\)$ can be subtracted off in the calculation of the induced velocity by singularities. And the terms proportional to $ln{\zeta}$ and ${\zeta}ln{\zeta}$ can be integrated analytically. Thus those are subtracted off in the numerical calculations and the numerical value obtained from the analytic integrations for $ln{\zeta}$ and ${\zeta}ln{\zeta}$ are added to the induced velocity. The four point Gaussian Quadrature formula was used to evaluate the higher order terms than ${\zeta}ln{\zeta}$ in the integration over the adjacent segments to the field points and the integral over the segments off the field points. The root mean square errors, $E_2$, are examined as a function of the number of nodes to determine convergence rates. The convergence rate of this method approaches 2.

  • PDF

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

Multipath TCP performance improvement using AQM in heterogeneous networks with bufferbloat (버퍼블로트를 가지는 이종 망에서 AQM을 이용한 Multipath TCP 성능 개선)

  • Hyeon, Dong Min;Jang, Jeong Hun;Kim, Min Sub;Han, Ki Moon;Lee, Jae Yong;Kim, Byung Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.131-140
    • /
    • 2017
  • Multipath TCP (MPTCP) is a transport layer protocol that simultaneously transmits data using multiple interfaces. MPTCP is superior to existing TCP in network environment with homogeneous subflows, but it shows worse performance compared to existing TCP in network environment with bufferbloat. If a bufferbloat occurs in one of the MPTCP multipaths, the packet will not arrive at the MPTCP receive buffer due to a sudden increase in delay time, resulting in a HoL blocking phenomenon. It makes the receive window of the other path to be zero. In this paper, we apply Adaptive Random Early Detection (ARED), Controlled Delay (CoDel) and Proportional Integral Controller Enhanced (PIE) among the proposed Active Queue Management (AQM) to limit the delay of bufferbloat path. Experiments were conducted to improve the performance of MPTCP in heterogeneous networks. In order to carry out the experiment, we constructed a Linux-based testbed and compared the MPTCP performance with that of the existing droptail.

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

Active Control of a New Cargo Handling System Adapted for Time-Varying Tide (조수간만의 차를 고려한 새로운 하역 시스템의 능동 제어)

  • Hyoung-Seok Kim;Dar-Do Chung;Seung-Bok Choi;Jae-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.61-71
    • /
    • 1999
  • This paper resents a novel cargo system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-tim position control. As a preliminary phase, a small-sized model of the cargo system is designed and constructed. The model consists of three principal components ; container palette transfer(CPT) car, platform with lifting columns and cargo ship. The platform activated by the electro-rheological(ER) valve-cylinder is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme incorporating time sequence and PID(proportional-integral-derivative) controller is formulated and implemented. Both the simulated and the measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

  • PDF

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.