• Title/Summary/Keyword: Proportional Hazard Model

검색결과 312건 처리시간 0.027초

Prognostic Factors for Survival in Patients with Breast Cancer Referred to Omitted Cancer Research Center in Iran

  • Baghestani, Ahmad Reza;Shahmirzalou, Parviz;Zayeri, Farid;Akbari, Mohammad Esmaeil;Hadizadeh, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.5081-5084
    • /
    • 2015
  • Background: Breast cancer is a malignant tumor that starts from cells of the breast and is seen mainly in women. It's the most common cancer in women worldwide and is a major threat to health. The purpose of this study was to fit a Cox proportional hazards model for prediction and determination of years of survival in Iranian patients. Materials and Methods: A total of 366 patients with breast cancer in the Cancer Research Center were included in the study. A Cox proportional hazard model was used with variables such as tumor grade, number of removed positive lymph nodes, human epidermal growth factor receptor 2 (HER2) expression and several other variables. Kaplan-Meier curves were plotted and multi-years of survival were evaluated. Results: The mean age of patients was 48.1 years. Consumption of fatty foods (p=0.033), recurrence (p<0.001), tumor grade (p=0.046) and age (p=0.017) were significant variables. The overall 1- year, 3-year and 5-year survival rates were found to be 93%, 75% and 52%. Conclusions: Use of covariates and the Cox proportional hazard model are effective in predicting the survival of individuals and this model distinguished 4 effective factors in the survival of patients.

잔차에 기초한 비례위험모형의 회귀진단법 고찰 - PBC 자료를 통한 응용 연구 (Review on proportional hazards regression diagnostics based on residuas)

  • 이성임;박성현
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.233-250
    • /
    • 2002
  • Cox의 비례위험모형(proportional hazards model)은 생존자료(survival data)에 대한 회귀모형으로 경제학 및 의·공학을 비롯한 여러 응용 분야에서 가장 널리 쓰이고 있는 모형 중 하나이다. 그러나, 이 모형은 일반선헝모형에 비해 잔차 분석을 통한 회귀 진단의 연구가 널리 알려져 있지 않아, 국내의 실제 자료 분석에서는 잔차 분석에 대한 활용이 거의 이루어지지 않고 있는 실정이다. 이에 본 논문에서는 그 동안 제안된 여러 잔차들을 비교 분석하고, S-plus 프로그램을 이용한 PBC(primary biliary cirrhosis) 자료분석을 통해 각 잔차들의 의미를 고찰하고자 한다.

비례위험모형에서 정보적 중도절단의 효과 (Effects of Informative Censoring in the Proportional Hazards Model)

  • 정대현;홍승만;원동유
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제2권2호
    • /
    • pp.121-133
    • /
    • 2002
  • This paper concerns informative censoring and some of the difficulties it creates in analysis of survival data. For analyzing censored data, misclassification of informative censoring into random censoring is often unavoidable. It is worthwhile to investigate the impact of neglecting informative censoring on the estimation of the parameters of the proportional hazards model. The proposed model includes a primary failure which can be censored informatively or randomly and a followup failure which may be censored randomly. Simulation shows that the loss is about 30% with regard to the confidence interval if we neglect the informative censoring.

  • PDF

경쟁 위험 회귀 모형의 이해와 추정 방법 (Estimation methods and interpretation of competing risk regression models)

  • 김미정
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1231-1246
    • /
    • 2016
  • 경쟁위험에 대한 연구 중 주로 쓰이는 방법은 Cause-specific 위험 모형과 subdistribution을 이용한 비례 위험 모형 방법이다. 그 이후에도 많은 모형이 제시되었지만, 추정 방법 면에서 설명력이 부족하거나 알고리즘으로 구현하기 어려운 단점을 가지고 있어서 잘 활용되고 있지 않다. 이 논문에서는 Cause-specific 위험 모형, subdistribution을 이용한 비례 위험 모형과 비교적 최근에 제시된 이항 회귀 모형(direct binomial model), 절대 위험 회귀 모형(absolute risk regression model), Eriksson 등 (2015)의 비례 오즈 모형(proportional odds model)을 소개하고 추정 방법을 간단히 설명하고자 한다. 각 모형에 대하여 SAS와 R을 이용한 활용 방법을 제시하고, 두 가지 경쟁위험이 존재하는 데이터를 R을 이용하여 분석하였다.

자영업 지속기간의 결정요인 (An Empirical Study on the Duration of Self-employment)

  • 안주엽;성지미
    • 노동경제논집
    • /
    • 제26권2호
    • /
    • pp.1-30
    • /
    • 2003
  • 한국의 노동시장에서 자영업이 차지하는 비중이 상당함에도 불구하고, 자영업에 대한 연구는 몇몇 연구자들에 의하여 진행되었고 기업가 정신(entrepreneurship)을 가진 개인의 자영업 창업 과정, 자영업의 성장 과정, 자영업의 소멸 과정에 대한 연구는 거의 없다고 보아야 할 것이다. 본 연구는 자영업의 소멸 과정에 초점을 두고 경과기간 모형을 "한국노동패널" 1차(1998)~4차(2001) 자료에 적용하여 자영업 지속기간이 결정요인을 분석하였다. 자영업 지속기간은 농림어업 및 제조업에서 길게 나타나고 숙박 및 음식점업에서는 상대적으로 진입과 퇴장이 빈번한 것으로 나타난다. 훈련경험이 있는 경우는 자영업의 지속성에 긍정적인 효과를 미치는 것으로 나타나며, 훈련의 주관자를 기준으로 볼 때, 특히 공공직업훈련이 미치는 효과가 눈에 띄게 나타난다. 이는 자영업 창업지원에서 정보 및 자금 측면뿐 아니라 자영업을 유지하기 위한 다양한 컨설팅이 주효할 수 있다는 것을 시사하는 것으로 간주할 수 있다.

  • PDF

코호넨네트워크와 생존분석을 활용한 신용 예측 (Credit Prediction Based on Kohonen Network and Survival Analysis)

  • 하성호;양정원;민지홍
    • 한국경영과학회지
    • /
    • 제34권2호
    • /
    • pp.35-54
    • /
    • 2009
  • The recent economic crisis not only reduces the profit of department stores but also incurs the significance losses caused by the increasing late-payment rate of credit cards. Under this pressure, the scope of credit prediction needs to be broadened from the simple prediction of whether this customer has a good credit or not to the accurate prediction of how much profit can be gained from this customer. This study classifies the delinquent customers of credit card in a Korean department store into homogeneous clusters. Using this information, this study analyzes the repayment patterns for each cluster and develops the credit prediction system to manage the delinquent customers. The model presented by this study uses Kohonen network, which is one of artificial neural networks of data mining technique, to cluster the credit delinquent customers into clusters. Cox proportional hazard model is also used, which is one of survival analysis used in medical statistics, to analyze the repayment patterns of the delinquent customers in each cluster. The presented model estimates the repayment period of delinquent customers for each cluster and introduces the influencing variables on the repayment pattern prediction. Although there are some differences among clusters, the variables about the purchasing frequency in a month and the average number of installment repayment are the most predictive variables for the repayment pattern. The accuracy of the presented system leaches 97.5%.

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

Kernel Estimation of Hazard Ratio Based on Censored Data

  • 최명희;이인석;송재기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.125-143
    • /
    • 2001
  • We, in this paper, propose a kernel estimator of hazard ratio with censored survival data. The uniform consistency and asymptotic normality of the proposed estimator are proved by using counting process approach. In order to assess the performance of the proposed estimator, we compare the kernel estimator with Cox estimator and the generalized rank estimators of hazard ratio in terms of MSE by Monte Carlo simulation. Two examples are illustrated for our results.

  • PDF

A Study on the Conditional Survival Function with Random Censored Data

  • Lee, Won-Kee;Song, Myung-Unn
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.405-411
    • /
    • 2004
  • In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.

  • PDF

Confidence Intervals for the Median Survival Time under Proportional Censorship

  • Jeong, Seong-Hwa;Cho, Kil-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.261-270
    • /
    • 2002
  • In this paper, we demonstrate the more accurate confidence intervals for median survival time under the simple proportional hazard model of Koziol and Green (1976) via the Edgeworth expansion for the distribution of the studentized ACL estimator derived in Jeong (2000). The numerical results show that the intervals, so-called test-based and reflect intervals (Slud et al., 1984), outperform normal approximating method in the small sample sizes and/or heavy censoring.