• Title/Summary/Keyword: Proportional Gain

Search Result 230, Processing Time 0.024 seconds

A Controller Design Using Error Model for Line Type Paths in Machine Tool (공작기계의 선형경로에 대한 오차모델을 이용한 제어기 설계)

  • 길형균;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.64-69
    • /
    • 2004
  • The work presented here deals with controller design using error model constructed with proportional control ramp response. The design aims at the improvement of transient response, steady-state error reduction with stability preservation, generation of the consistent contour error through the proportional gain regulation of a mismatched system. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The next is to construct a table for the steady-state loop gain with step input. The table is used for selecting the proportional gain. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

Time-varying Proportional Navigation Guidance using Deep Reinforcement Learning (심층 강화학습을 이용한 시변 비례 항법 유도 기법)

  • Chae, Hyeok-Joo;Lee, Daniel;Park, Su-Jeong;Choi, Han-Lim;Park, Han-Sol;An, Kyeong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.399-406
    • /
    • 2020
  • In this paper, we propose a time-varying proportional navigation guidance law that determines the proportional navigation gain in real-time according to the operating situation. When intercepting a target, an unidentified evasion strategy causes a loss of optimality. To compensate for this problem, proper proportional navigation gain is derived at every time step by solving an optimal control problem with the inferred evader's strategy. Recently, deep reinforcement learning algorithms are introduced to deal with complex optimal control problem efficiently. We adapt the actor-critic method to build a proportional navigation gain network and the network is trained by the Proximal Policy Optimization(PPO) algorithm to learn an evasion strategy of the target. Numerical experiments show the effectiveness and optimality of the proposed method.

Study of Dynamic stiffness using labVIEW (laVIEW를 이용한 Dynamic stiffness에 관한 연구)

  • Lim, Jae-Hun;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1722-1723
    • /
    • 2008
  • This paper present dynamic stiffness of servo motor using labVIEW PXI module. In speed control loop, we apply proportional gain and integral gain, using PID controller, respectively in servo motor and confirmed dynamic stiffness of servo motor varing each gain. Changing proportional gain and integral gain, confirm what effect in dynamic stiffness are change in frequency response..

  • PDF

A Study on performance improvement of the Proportional Gain Adaptive MMSE Detector (비례이득 적응형 MMSE 검출기의 성능 개선에 관한 연구)

  • Yoo Dong-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.213-221
    • /
    • 2006
  • In this paper, an improved detection method is proposed by supplementing various types of Proportional gam for a MMSE detecter. This method is proposed io complement the shortcomings of the conventional detection method which is used for multiuser detection in STBC(Space-Time Block Code) CDMA system. We analyzed the improved method in bit error probability viewpoint and compared the result with that of the conventional method. In this result, we showed that the Improved method obtains better performance of bit error probability than the conventional method when parameters such as delay, number of user and SNR are increased.

  • PDF

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.

Spectral gain variation characteristics of the silica-based erbium doped fiber amplifier in the 1545-1557 nm wavelength region (에르븀 첨가 광증폭기의 파장에 따른 이득 특성 측정 및 분석)

  • 김향균;박서연;이동호;박창수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.209-212
    • /
    • 1997
  • Spectral gain variation characteristics of the silica-based erbium doped fiber amplifiers is investigated in the 1545-1557 nm wavelength region. For a given length of the erbium doped fiber, the gain($G_0$) with minimum spectral gain variation is uniquely determined. The spectral gain imbalance DG is nearly proportional to the difference between G0 and the operating gain(G) with the proportional constant of 0.1-0.2 dB/dB. For the gain flattened EDFA at the input power of -20 dBm/ch. and the gain of 21 dB, the output power and the optical signal to noise variations after 12 cascaded EDFAs were 5 dB and 3 dB, respectively.

  • PDF

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Comparison of Proportional, Integral, and P-I Control Systems in Biological Wastewater Treatment Plants (생물학적 하수처리시스템에 적용된 Proportional, Integral 및 P-I 조절 시스템에 대한 비교)

  • Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.410-415
    • /
    • 2005
  • The main purpose of this study is to evaluate the characteristics of three sets of traditional control methods (proportional, integral, and proportional - integral controls) through lab-scale biological reactor experiments. An increase in proportional gain ($K_c$) resulted in reduced dissolved oxygen (DO) offset under proportional control. An increase in integral time ($T_i$) resulted in a slower response in DO concentration with less oscillation, but took longer to get to the set point. P-I control showed more stable and efficient control of DO and airflow rates compared to either proportional control or integral control. Developed P-I control system was successfully applied to lab-scale Sequencing Batch Reactor (SBR) for treating industrial wastewater with high organic strength.

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.