• Title/Summary/Keyword: Proportional Control

Search Result 1,620, Processing Time 0.031 seconds

Hybrid Position/Force Control of 3 DOF Robot (3자유도 로봇의 하이브리드 위치/힘 제어)

  • 양선호;박태욱;양현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

OPTIMAL IMPULSE AND REGULAR CONTROL STRATEGIES FOR PROPORTIONAL REINSURANCE PROBLEM

  • RUI-CHENG YANG;KUN-HUI LIU;BING XIA
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.145-158
    • /
    • 2005
  • We formulate a stochastic control problem on proportional reinsurance that includes impulse and regular control strategies. For the first time we combine impulse control with regular control, and derive the expected total discount pay-out (return function) from present to bankruptcy. By relying on both stochastic calculus and the classical theory of impulse and regular controls, we state a set of sufficient conditions for its solution in terms of optimal return function. Moreover, we also derive its explicit form and corresponding impulse and regular control strategies.

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

A Conceptual Approach for Discovering Proportions of Disjunctive Routing Patterns in a Business Process Model

  • Kim, Kyoungsook;Yeon, Moonsuk;Jeong, Byeongsoo;Kim, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1148-1161
    • /
    • 2017
  • The success of a business process management system stands or falls on the quality of the business processes. Many experiments therefore have been devoting considerable attention to the modeling and analysis of business processes in process-centered organizations. One of those experiments is to apply the probabilistic theories to the analytical evaluations of business process models in order to improve their qualities. In this paper, we excogitate a conceptual way of applying a probability theory of proportions into modeling business processes. There are three types of routing patterns such as sequential, disjunctive, conjunctive and iterative routing patterns in modeling business processes, into which the proportion theory is applicable. This paper focuses on applying the proportion theory to the disjunctive routing patterns, in particular, and formally named proportional information control net that is the formal representation of a corresponding business process model. In this paper, we propose a conceptual approach to discover a proportional information control net from the enactment event histories of the corresponding business process, and describe the details of a series of procedural frameworks and operational mechanisms formally and graphically supporting the proposed approach. We strongly believe that the conceptual approach with the proportional information control net ought to be very useful to improve the quality of business processes by adapting to the reengineering and redesigning the corresponding business processes.

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.

Active Vibration Control of a Flexible Cantilever Beam Using SMA Actuators (SMA 작동기를 이용한 유연외팔보의 능동진동제어)

  • Choi, S.B.;Cheong, C.C.;Hwang, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.167-174
    • /
    • 1995
  • This paper experimentally demonstrates the feasibility of using shape memory alloy(SMA) actuators in controlling structural vibrations of a flexible cantilevered beam. The dynamic characteristics of the SMA actuator are identified and integrated with the beam dynamics. Three types of control schemes; constant amplitude controller(CAC), proportional amplitude controller (PAC) and sliding mode controller(SMC) are designed. The CAC and PAC are determined on the basis of physical phenomenon of the SMA actuator, while teh SMC is formulated in a mathematical manner. The proposed controllers are implemented and evaluated at various operating condirions by investigating the control level of suppression in transient vibration.

  • PDF

Remote control of Drum/Chute mechanism in a concrete mixer-truck (콘크리트 믹서 트럭에서의 드럼 및 슈트의 원격 제어)

  • Lee, M.C.;Son, K.;Jeong, W.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 1993
  • A remote control system was developed in order to operate by push-buttons the conventional drum and chute components, which have been operated manually, in a concrete mixer-truck. As actuators, a hydraulic power unit was used for chute operations: two DC motors for drum operations. The devised drum controller consisted of three electric circuits : an analog proportional-integral control circuit, a drum acceleration circuit, and an emergency stop circuit. The remote control system was installed to be tested experimentally and then was evaluated to work successfully with a desirable accuracy.

  • PDF

Surface Electrical Conduction Properties of Composite Insulator Materials (옥외 애자용 재료의 표면 전기 전도 특성)

  • Hong, Hyun-Mun;Jeon, B.S.;Kim, J.G.;Kang, S.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.409-411
    • /
    • 2005
  • In this literature, we mose the design method of a proportional pressure control valve using valve system analysis and finite element method. And it is shown that a manufactured proportional pressure control valve character is well matched to tile theoretical analysis results. Also it is verified that the proposed valve has excellent performance compared to the other foreign products.

  • PDF

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.