• Title/Summary/Keyword: Propeller performance

Search Result 394, Processing Time 0.026 seconds

Numerical study of propeller boss cap fins on propeller performance for Thai Long-Tail Boat

  • Kaewkhiaw, Prachakon
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2021
  • The present paper purposes a numerical evaluation of the Thai Long-Tail Boat propeller (TLTBP) performance by without and with propeller boss cap fins (PBCF) in full-scale operating straight shaft condition in the first. Next, those are applied to inclined shaft conditions. The actual TLTBP has defined an inclined shaft propeller including the high rotational speed, therefore vortex from the propeller boss and boss cap (hub vortex) have been generated very much. The PBCF designs are considered to weaken of vortex behind the propeller boss which makes the saving energy for the propulsion systems. The blade sections of PBCF developed from the original TLTBP blade shape. The integrative for the TLTBP and the PBCF is analyzed to increase the performance using computational fluid dynamics (CFD). The computational results of propeller performance are thoroughly compared between without and with PBCF. Moreover, the effects of each PBCF component are computed to influence the TLTBP performance. The fluid flows around the propeller blades, propeller boss, boss cap, and vortex have been investigated in terms of pressure distribution and wake-fields to verify the increasing efficiency of propulsion systems.

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Experiment with Axiom Propeller in Cavitation Tunnel

  • Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.296-303
    • /
    • 2014
  • The Axiom propeller is a unique 3 bladed propeller and it enables to generate the same amount of thrust going ahead as it does going astern because of its 's' type skew-symmetric blade section. A earlier variant of the design (Axiom I propeller) performed a low propeller efficiency, maximum 35 % efficiency, and further blade outline design was carried out to achieve a higher efficiency. The optimized new blade outline (Axiom II propeller) has more conventional Kaplan geometry shape than Axiom I propeller. Model tests of open water performance and propeller cavitation for both propellers were conducted at Emerson Cavitation Tunnel in order to compare their performances. Experiment results revealed that Axiom II propeller provides a maximum 53 % efficiency and provides better efficiency and cavitation performance over the Axiom I propeller under similar conditions.

Propeller Performance Analysis for Human Powered Aircraft (인간동력 항공기용 프로펠러 성능해석)

  • Park, Poo-Min
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.193-201
    • /
    • 2013
  • Propeller is an important component of Human Powered Aircraft (HPA) propulsion system. HPA uses large diameter low rotational speed propeller to get high propeller efficiency. The propeller was designed by HPA propeller designing program. The propeller pitch is adjustable by rotating the blade axis angle at ground. Performance of the propeller for various parameters are analysed by the same program used for design. Off-design condition performance was also checked including pilot power change and flight speed change. The propeller was manufactured in ultra-light structure using carbon composite material down to 950g. The propeller was ground tested on ironbird and installed on KARI HPA. Finally the HPA flew 291m with this propeller.

Aerodynamic Design and Analysis of a Propeller for a Micro Air Vehicle

  • Cho Lee-Sang;Yoon Jae-Min;Han Cheol-Heui;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1753-1764
    • /
    • 2006
  • A U-80 propeller and its modified version, U-75 propeller, are used for a micro air vehicle. The performance characteristics of a U-80 propeller and a U-75 propeller have not much known in the published literature. Thus, their aerodynamic characteristics are investigated using a lifting surface numerical method. The lifting surface method is validated by comparing computed results with measured data in a wind tunnel. From the computed results, it is found that the U-75 propeller produces larger thrust with higher efficiency than the U-80 propeller. To enhance the performance of these propellers, a new propeller is designed by following the sequential design procedures with the design parameters such as hub-tip ratio, maximum camber and its position, and chord length distribution along the radial direction. The performance of the designed propeller is shown to be improved much comparing with those of both the U-80 and U-75 propellers.

Research on Hydrodynamic Performance of the Interaction between Ducted Propeller and Rudder based on CFD

  • Xie, Yonghe;Wang, Guibiao;Wang, Wei
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • The computational fluid dynamics software FLUENT is used to calculate and compare the hydrodynamic performance of the propeller-rudder system of a 42-m trawler, which is installed with a ducted propeller. The effects of rudder on the hydrodynamic performance of the ducted propeller and the wake flow behind the propeller are firstly investigated. In addition, the different rudder angles are also considered to further study the performance of this system.

A numerical study of scale effects on performance of a tractor type podded propeller

  • Choi, Jung-Kyu;Park, Hyoung-Gil;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.380-391
    • /
    • 2014
  • In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called 'drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

Experimental Investigation For Various Propeller Tunnel Geometry Effect On Propulsion Performance (프로펠러 보호터널 형상이 추진성능에 미치는 영향에 대한 실험적 고찰)

  • Suh, Sung-Bu;Park, Choong-Hwan;Moon, Il-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.40-45
    • /
    • 2007
  • This study was performed to investigate the effect of various propeller tunnel shapes on the propulsion performance of a fishing boat. The propeller tunnel reduces the problem resulting from the open propeller accidentally catching the waste net and cable on the sea, as well as increasing the cruising speed. For 3 different tunnel geometries, the model test is conducted in the circular water channel, and the potential based panel method was applied to analyze the hydrodynamic characteristics of propeller. Also, both results are compared with each other to represent the difference between results of the model scale test and the potential theory. It is expected that these results could be referenced in the design of the propeller tunnel in consideration of the hydrodynamic interaction between the propeller and the tunnel.

Performance optimization of marine propellers

  • Lee, Chang-Sup;Choi, Young-Dal;Ahn, Byoung-Kwon;Shin, Myoung-Sup;Jang, Hyun-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.211-216
    • /
    • 2010
  • Recently a Wide Chord Tip (WCT) propeller has been developed and applied to a commercial ship by STX Offshore & Shipbuilding. It is reported that the WCT propeller significantly reduces pressure fluctuations and also ship's noise and vibration. On the sea trial, vibration magnitude in the accommodations at NCR was measured at 0.9mm/sec which is only 10% of international allowable magnitude of vibration (9mm/sec). In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

A Study on the Calculation f Maximum Strain of Propeller Shaft Coating Materials (프로펠러축 피복재의 최대 스트레인 계산에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.219-224
    • /
    • 1998
  • Recently to achieve the anti-corrossive effect in propeller shafts the coating technique with suit-able coating materials is available instead of bronze-sleeved shafts. In this case the coating mate-rials in service must not be delaminated from the shaft and the crack must not be originated. Thus the various performance and security test for coating materials of propeller shaft must be carried out under the real conditions or more severe circumstance. The most important factors effecting on the funtion of coating materials in propeller shaft are the strain and the environment of sea water. In this paper therefore the maximum possible strain which can be occured in real propeller shaft was calculated based on IACA standard classification rule in order to give the proper level of strain to the test samples in performance test of propeller shaft coating materials.

  • PDF