• 제목/요약/키워드: Propeller Blade

검색결과 206건 처리시간 0.023초

A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force

  • Yao, Huilan;Zhang, Huaixin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.477-490
    • /
    • 2018
  • Effects of inflow Reynolds number (Re), turbulence intensity (I) and pressure gradient on the transition flow over a blade section were studied using the ${\gamma}-Re{\theta}$ transition model (STAR-CCM+). Results show that the $Re_T$ (transition Re) at the transition location ($P_T$) varies strongly with Re, I and the magnitude of pressure gradient. The $Re_T$ increases significantly with the increase of the magnitude of favorable pressure gradient. It demonstrates that the $Re_T$ on different blade sections of a rotating propeller are different. More importantly, when there is strong adverse pressure gradient, the $P_T$ is always close to the minimum pressure point. Based on these conclusions, the $P_T$ on model propeller blade surface can be estimated. Numerical investigations of pressure distribution and transition flow on a propeller blade section prove these findings. Last, a simple method was proposed to estimate the $P_T$ only based on the propeller geometry and the advance coefficient.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

Influence of Blade Number on the Flow Characteristics in the Vertical Axis Propeller Hydro Turbine

  • Byeon, Sun-Seok;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.144-151
    • /
    • 2013
  • In this paper, the design method of a low-head propeller-type hydro turbine is studied for various numbers of blades on an axial propeller. We also investigate the relationship between geometrical parameters and internal performance parameters, such as angular velocities (100, 200, 300, 400 rpm) and 2.5~4m low heads through a three-dimensional numerical method with the SST turbulent model. The numerical results showed that the blade number had a more dominant influence than the change in heads and rotational speed on the flow characteristics of the turbine. The distributions of pressure and velocity in the streamwise direction of the propeller turbine were graphically depicted. Especially, the relationship among dimensionless parameters like specific speed ($N_s$), flow coefficient (${\phi}$) and power coefficient (P) were investigated.

무인 표적기의 성능 향상을 위한 프로펠러 설계 (Propeller Design of Unmanned Target Drone for the Performance Improvement)

  • 이상명;성형건;노태성
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.46-52
    • /
    • 2005
  • 무인표적기의 성능 향상을 위해 추진시스템인 프로펠러를 재설계하였다. Vortex 이론을 이용한 설계 및 해석 프로그램을 사용하였으며, 설계 변수는 반경 방향에 따른 코드 길이, 블레이드의 반경 변화, 그리고 비틀림각 등이다. 저속과 고속일 때 모두 향상된 추력을 내도록 엔진 회전수 변경을 포함하여 프로펠러를 재설계 하였다.

새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 - (A Propeller Design Method with a New Blade Section : Applied to Container Ships)

  • 이진태;김문찬;안종우;반석호;김호충
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.40-51
    • /
    • 1991
  • 캐비테이션 특성이 우수하고 추진효율이 높은 콘테이너선용 프로펠러를 설계하기 위하여 새로운 날개단면(KH18)을 이용한 프로펠러 설계법을 제안하였다. KH18 단면은 캐비테이션 초생곡선(Cavitation-free bucket diagram) 및 양력-항력곡선(Lift-drag curve)에서 폭이 넓어 불균일한 선미후류에서 작동되는 선박용 프로펠러의 날개 단면으로 적당하리라 판단되었다. 새로운 날개 단면을 이용한 콘테이너선의 프로펠러 설계를 위하여 양력면이론을 사용하였다. 프로펠러 설계시 코오드 방향 부하분포를 설계변수로 선택하여 5개의 프로펠러를 설계하였고, 단면 변화의 영향을 비교하기 위하여 NACA형 단면을 갖는 프로펠를 설계하여 예인수조 및 캐비테이션 터널에서 모형시험을 수행하였다. 모형시험 결과 코오드 방향 부하분포가 프로펠러 반경의 70% 내부에서는 날개 앞날의 부하가 적고 그 외부에서는 날개 앞날부하가 상대적으로 큰 코오드방향 부하분포를 갖는 프로펠러(KP197)가 NACA 단면을 갖는 프로펠러에 비하여 추진효율은 1% 향상되었고 캐비테이션 발생양은 30% 감소하였으며 선체변동압력은 9%감소하였다. 새로운 날개단면을 갖는 프로펠러의 캐비테이션 특성이 우수함을 고려하여 낱개 전개면적비를 감소시킨다면 더 많은 추진효율 증가를 기대할 수 있으리라 판단된다.

  • PDF

추진기 날개 끝 형상변화에 따른 보오텍스 유동에 대한 수치해석 (Numerical Analysis of a Tip Vortex Flow for Propeller Tip Shapes)

  • 박선호;서정화;김동환;이신형;김기섭
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.501-508
    • /
    • 2011
  • In order to control the tip vortex cavitation occurring around the tip of a rotating propeller blade, researches on the propeller cavitation and blade tip vortex flows have been increased. In this paper, the propeller tip vortex flow for a blunt and sharp tips was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. In numerical open water test, torques, thrusts, pressure distributions and vortex flows were compared for various rotating speeds. To consider a hull wake, the nominal wake was specified in inlet boundary condition. Pressure distributions and vortex flows with the hull wake were investigated for various propeller rotating angles. From the results, it was confirmed that the blunt tip propeller delayed the tip vortex flow.

Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정 (Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique)

  • 이상준;백부근;윤정환
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

박용 프로펠라의 스큐각 변화에 따른 피로강도해석 (Fatigue Strength Analysis of Marine Propeller Blade to Change in Skew Angle)

  • 김발영;이주성
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.80-87
    • /
    • 1998
  • 선미의 불균일유동장에서 작동하는 박용 프로펠라의 구조적 안전을 평가하는 강도해석 프로그램을 개발하였다. 이 논문은 여러 가지 선종에 대하여 실선자료를 기초로 하여 선속과 스큐각의 관계를 제시하였고, 대형 고속 컨테이너선박의 초기설계시 강도측면에서 스큐각의 최적화를 위하여 여러 가지 스큐각에 대한 프로펠라 강도해석을 수행하였다. 프로펠라 날개는 양력면이론으로부터 계산된 표면압력과 원심력을 받고 있다. 선박의 전진 및 후진시의 프로펠라날개의 구조응답을 구하기 위하여 정적 구조해석을 수행해서 그 결과를 기초로 피로강도를 평가하였다.

  • PDF

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

Numerical study of propeller boss cap fins on propeller performance for Thai Long-Tail Boat

  • Kaewkhiaw, Prachakon
    • Ocean Systems Engineering
    • /
    • 제11권4호
    • /
    • pp.373-392
    • /
    • 2021
  • The present paper purposes a numerical evaluation of the Thai Long-Tail Boat propeller (TLTBP) performance by without and with propeller boss cap fins (PBCF) in full-scale operating straight shaft condition in the first. Next, those are applied to inclined shaft conditions. The actual TLTBP has defined an inclined shaft propeller including the high rotational speed, therefore vortex from the propeller boss and boss cap (hub vortex) have been generated very much. The PBCF designs are considered to weaken of vortex behind the propeller boss which makes the saving energy for the propulsion systems. The blade sections of PBCF developed from the original TLTBP blade shape. The integrative for the TLTBP and the PBCF is analyzed to increase the performance using computational fluid dynamics (CFD). The computational results of propeller performance are thoroughly compared between without and with PBCF. Moreover, the effects of each PBCF component are computed to influence the TLTBP performance. The fluid flows around the propeller blades, propeller boss, boss cap, and vortex have been investigated in terms of pressure distribution and wake-fields to verify the increasing efficiency of propulsion systems.