• Title/Summary/Keyword: Propelled Glider

Search Result 2, Processing Time 0.02 seconds

Status of Ocean Observation using Wave Glider (무인해상자율로봇(Wave Glider)을 이용한 해양관측 현황)

  • Son, Young Baek;Moh, Taejun;Jung, Seom-Kyu;Hwnag, Jae Dong;Oh, Hyunju;Kim, Sang-Hyun;Ryu, Joo-Hyung;Cho, Jin Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.419-429
    • /
    • 2018
  • An unmanned autonomous maritime surface system can move the vehicle to the areas for observing the ocean accidents, disasters, and severe weather conditions. Detection and monitoring technologies have been developed by the converging of the regional and local surveillance system. Wave Glider, one of the autonomous maritime surface systems, is ocean-wave propelled autonomous surface vehicle and controlled using Iridium satellite communication. In this study, we carried out two-time Wave Glider observations for 2016 and 2017 summer in the East China Sea that the area was influenced by low-salinity water. We observed the sea surface warming effect due to the low-salinity water using the regional (satellite) and local (Wave Glider) surveillance system. We also monitored the effect of the typhoon and understood the change of the ocean-atmosphere environments in real-time. New unmanned surface system with autonomous system and high endurance structure can measure comprehensively and usefully a long observation in complicated ocean environments because of connecting with other surveillance systems.

A Study on Anti-Submarine Surveillance Systems using Submarine's Turbulent Wake (비음향신호(난류항적)를 이용한 대잠 탐색 및 감시체계 적용방안 연구)

  • Lee, Yong-Chol;Lim, Se-Han;Park, Jong-Jin;Jin, Jong-Han;Knag, Woong;Lee, Mon-Jin;Kim, Yun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.138-146
    • /
    • 2012
  • Using Shear-free Ship wake theory it was predicted the detectable submarine's turbulent wake on the sea surface was about 12km long when there was no breaking waves on the sea surface. It means that there are sufficient detectable turbulent kinetic energies on the sea surface as well as in the water. In this paper, we have proposed some concepts of non acoustic anti-submarine surveillance systems; SAR for sea surface surveillance, LIDAR for sub-surface surveillance and propelled gliders for under -water surveillance.