• Title/Summary/Keyword: Propane flame

Search Result 157, Processing Time 0.031 seconds

An Experimental Study on the Noise Generation Mechanisms of Propane Premixed Flames (프로판 예혼합화염의 소음발생 매커니즘에 관한 실험적 연구)

  • Lee, Won-Nam;Park, Dong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.27-33
    • /
    • 2004
  • The Noise generation mechanisms of propane laminar premixed flames on a slot burner have been studied experimentally. The sound levels and frequencies were measured for various mixture flow rates (velocities) and equivalence ratios. The primary frequency of self-induced noise increases with the mean velocity of mixture as $f{\;}{\propto}{\;}U_f^{1.144}$ and the measured noise level increases with the mixture flow rate and equivalence ratio as $p{\;}{\propto}{\;}U_f^{1.7}$$F^{8.2}$. The nature of flame oscillation and the noise generation mechanisms are also investigated using a high speed CCD camera and a DSRL camera. The repetition of sudden extinction at the tip of flame is evident and the repetition rates are identical to the primary frequencies obtained from the FFT analysis of sound pressure signals. CH chemiluminescence intensities of the oscillating flames were also measured by PMT with a 431 nm(10 FWHM) band pass filter and compared to the pressure signals.

  • PDF

A Study on the Effect of AC Electric Field on the Liftoff Characteristics of Turbulent Propane Jets. (교류전기장이 프로판 난류제트 화염의 부상특성에 미치는 영향)

  • Park, Chul-Soo;Lee, Sang-Min;Cha, Min-Suk;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.83-88
    • /
    • 2004
  • High voltage AC electric field has been applied to turbulent propane jets to investigate the effect of electric field on liftoff characteristics. Liftoff velocity and liftoff height have been measured by varying the applied voltage and frequency. Liftoff velocities were delayed and liftoff heights were reduced by applying AC, not by DC. The electric effect became disappeared with further increasing jet velocities, which shows that the effect can be explained by the balance between inertia force and electric force. The flame stabilization effect was intensified as either applied voltage or frequency increased. Plasma streamers were generated between the flame and the jet under high voltage conditions. Liftoff velocity in the absence of plasma can be well correlated by the function of voltage and frequency.

  • PDF

Study on Mobile Broadband Coherent Anti-Stokes Raman Spectrometer For Combustion Diagnostics (연소진단용 이동형 광대역 코헤런트 반 스톡스 라만 분광기에 관한 연구)

  • Park, Chul-Woung;Park, Seung-Nam;Hahn, Jae-Won;Lee, Jong-Ung
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 1996
  • We construct a mobile broadband coherent anti-Stokes Raman spectroscopy system to measure the temperature of combustion gases. To improve the accuracy of CARS temperatures due to Stokes lasers, a modeless dye laser is constructed. A monochromator to disperse CARS spectra is also constructed in the spectrometer for easy portability. The accuracy of CARS temperature, measured in graphite tube furnace in reference to a radiation pyrometer, is better than 2 % from 1000 K to 2400 K. The CARS temperature error due to the variation of the spectral distribution of the modeless laser is measured to be less than 1.5 % during five hours operation. As a demonstration of combustion diagnosis, we applied the spectrometer to measure the temperature distribution of the propane air premixed flame.

  • PDF

Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position (전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성)

  • Taehun Kim;Minseok Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

Lean Burn Combustion Characteristics of Propane Premixed Flame in Electric Field (전기장 인가에 따른 프로판 예혼합 화염의 희박연소 특성)

  • Minseok Kim;Junyoung Choi;Taehun Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • In this study, characteristics of a propane-air premixed flame sin DC electric field was investigated. The stainless steel Bunsen burner and the stainless steel ring were used as electrode, and the high voltage supply was used for applying electric field. Flammability range increased significantly when the positive voltage was applied because of extension of LBO limit, while it shrank when the negative voltage was applied. The reason for this was not much related to the burning velocity, but the induced flow around the burner by electric field. withNOx production slightly increased after positive voltage was applied in identical equivalence ratio. Nevertheless, it was advantageous to apply the positive electric field to reduce the NOx since the extension of LBO limit makes the burner possible to operate in very low equivalence ratio.

Characteristics of Lifted Flame in Coflow Jets for Highly Diluted Fuel (동축류 버너에서 질소 희석된 연료의 부상 특성)

  • Won, S.H.;Cha, M.S.;Lee, B.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.9-15
    • /
    • 2000
  • Characteristics of lifted flames for highly diluted propane and methane with nitrogen in coflowing air is experimentally investigated. In case of propane, for various fuel mole fractions and jet velocities, three distinctive types of flames are observed; nozzle attached flames, stationary lifted flames, and oscillating lifted flames. When fuel jet velocity is much smaller than coflow velocity, the base of nozzle attached flame has a tribrachial structure unlike usual coflow difusion flames. Based on the balance mechanism of the propagation speed of tribrachial flame with flow velocity, jet velocity is scaled with stoichiometric laminar burning velocity. Results show that there exists two distinctive lifted flame stabilization; stabilization in the developing region and in the developed region of jets depending on initial fuel mole fraction. It has been found that lifted flame can be stabilized for fuel velocity even smaller than stoichiometric laminar burning velocity. This can be attributed to the buoyancy effect and flow visualization supports it. Lifted flames are also observed for methane diluted with nitrogen. The lifted flames only exist in the developing region of jet.

  • PDF

The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio (자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할)

  • Lee, Won-Nam;Bae, Seung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

Comparison of Dynamic Characteristics of Methane/Air and Propane/Air Premixed Flames with Ultrasonic Standing Wave (정상초음파가 개재하는 메탄/공기 및 프로판/공기 예혼합화염의 동역학적 특성 비교)

  • Kim, Min Cheol;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An experimental results on the dynamic characteristics of hydrocarbon/air premixed flames with ultrasonic standing waves are presented and compared. Images of the propagating flames were acquired by using a high-speed camera, and the flame behavior of methane/air and propane/air premixed flame were closely scrutinized through the image post-processing. At the fuel-lean conditions, the flame propagation velocity increased due to the intervention of the ultrasonic standing wave and vice versa at the fuel-rich conditions.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.