• Title/Summary/Keyword: Propane flame

Search Result 157, Processing Time 0.034 seconds

Characteristics of methane non-premixed multiple jet flames (메탄 비예혼합 상호작용 화염의 특성)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1365-1370
    • /
    • 2004
  • It has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single nozzle, the propane non-premixed flames are not extinguished even in 200m/s, In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed case, the maximum blowout velocity for the methane diffusion flame was achieved when small amount of fuel is supplied through the center nozzle and s/d equals around 21. In the laminar region, the flame attached at the center nozzle anchored the outer lifted flames.

  • PDF

Basic flow fields and stability characteristics of two dimensional V flames (이차원 V 화염의 기본 유동장과 안정화 특성)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.185-193
    • /
    • 2003
  • Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.

  • PDF

Flow Characteristics of Propane Premixed Flame on AC Electric Field (교류 전기장 인가에 따른 프로판 예혼합 화염의 유동 특성)

  • Boyun Kim;Minseok Kim;Taehun Kim;Ilsong Kweon;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • This study investigates the flow characteristics of propane-air premixed flames on AC electric field using the Schlieren method. A voltage was applied to the ring electrode and the burner was grounded to form an electric field, and the applied voltage was fixed at 16 kV (Vpp). Results show that under the application of AC electric fields, flow around the flame oscillated only at frequencies below 50 Hz, and no oscillation was observed above this frequency range. Flame height oscillated with frequency in the range of 25 to 300 Hz, with frequency doubling observed in the range of 25 to 150 Hz. The flammability limit increased with frequency up to 250 Hz, but in the high-frequency range above 250 Hz, the flammability limit did not increased and converged.

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF

Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube (관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구)

  • Guahk, Young-Tae;Lee, Dae-Keun;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

Comparison of Morphology of Deposits on SiC Filaments with LIF Image in Propane/Air Laminar Diffusion Flames in an Oxidizer Deficient Environment (산화제 결핍 상태의 프로판 층류 확산화염에서 LIF 이미지와 SiC 필라멘트 부착물의 형태 비교)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM and compared with UV-excited laser induced broadband fluorescences in co-flowing, propane laminar diffusion flames in a reduced oxidizer environment. The homogeneous morphology of droplet-like deposits inner flame zone and the agglomeration of condensed-phase deposits and the transition to soots from grown up droplet-like precursors with approaching the flame surface can be observed in a barely sooting flame. The average size of the mature soots deposited in the luminous flame edge is scarcely dependent on their axial position in a confined flame under reduced oxidizer condition. A double structure of PAH fluorescence is observed in near-extinction flames with further decreasing of oxidizer. A comparison of the PAH fluorescence with the morphologies of deposits indicates that appearance of the "dark" hollow zone is caused by a decreased number density of developed liquid-phase large molecules and the outer weak fluorescence zone is caused by the diffusion of gas-phase small molecules.

  • PDF

Influence of Dust Environment on the Detection Capability of Ultraviolet Flame Detector (UV 화염감지기의 감지성능에 대한 분진분위기의 영향)

  • Kim Hong;Hu Rui
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.113-119
    • /
    • 1997
  • The detection capability of UV flame detector in dust environment would be impaired. In this study, an experiment was conducted, in an effort to further understand the behavior of UV flame detector and to evaluate its detection capability in industry dust environment. Detergent powder, coal powder and dry extinguishing agent were selected as dust sources. Flaming sources include propane and gasoline flame. Experiment results indicate that dust can cause remarkable attenuation of UV flame radiation. The concentration of dust and the length of air layer where dust dispersed determine the reduction of radiation intensity. On the other hand, the attenuation of UV radiation also depends on the chemical and Physical properties of dust.

  • PDF

Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets (정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Fujita, O.;Ito, K.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

Studies on the Flame Temperature Measurement of the Propagating Flame (전파화염에서의 화염온도측정에 관한 연구)

  • ;;Jeung, In Seuck
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.4
    • /
    • pp.182-189
    • /
    • 1977
  • The propagating flame temperature of the Propane-Air premixture by using 30.$\mu$ and 50.$\mu$ diameter platinum sensing wires, that is, Two Wires Correction Method, Through the constant volume burining inside the 150mm diameter, 30mm height combustion chamber under the circumstances of the atomospheric pressure, and the room temperature was determined. Also the temperature distribution across High Temperature Region, i.e. Flame Front, and the temperature profile behind the flame the front have been obtained.

OH Radical Distribution and Sooting Characteristics in Co-Flow Diffusion Flames (동축류 확산화염의 OH 라다칼 분포 및 매연 특성)

  • Lee, Won-Nam;Song, Young-Hoon;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.1-11
    • /
    • 1997
  • The soot and OH radical distributions have been experimentally studied in ethylene and propane laminar diffusion flames. The integrated soot volume fraction was measured along the centerline of a flame using a laser light extinction method. Planar laser light scattering and PLIF techniques are employed for the soot and OH radical distribution measurements utilizing Nd:YAG laser and OPO, FDO system. The concentration of OH radical is rapidly decreased at the edge of sooting region, which implies the importance of OH radical species on the soot oxidation process. For ethylene flames, the addition of air in fuel moves the OH radical distribution towards the center line of a flame at the soot oxidation region, while the concentration of OH radical remains relatively high at the soot formation region. The interaction between soot particles and OH radicals becomes more active with fuel-air at the soot oxidation region. For propane flames, however, any indication of the increased interaction between soot particles and OH radicals with fuel-air was not noticed.

  • PDF