• Title/Summary/Keyword: Propane atmosphere

Search Result 15, Processing Time 0.019 seconds

Operating Pressure Conditions for Non-Explosion Hazards in Plants Handling Propane Gas

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.493-497
    • /
    • 2020
  • Hazardous area classification is designed to prevent chemical plant explosions in advance. Generally, the duration of the explosive atmosphere is used for zone type classification. Herein, IEC code, a quantitative zone type classification methodology, was used to achieve Zone 2 NE, which indicates a practical non-explosion condition. This study analyzed the operating pressure of a vessel handling propane to achieve Zone 2 NE by applying the IEC code via MATLAB. The resulting zone type and hazardous area grades were compared with the results from other design standards, namely API and EI codes. According to the IEC code, the operating pressure of vessels handling propane should be between 101325-116560.59 Pa. In contrast, the zone type classification criteria used by API and EI codes are abstract. Therefore, since these codes could interpret excessively explosive atmospheres, care is required while using them for hazardous area classification design.

A Study on the spray characteristics according to injection conditions for LPG injector (분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구)

  • Ryu, Jea-Duk;Yoon, Yong-Won;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

Effects of the Gas Composition on Internal Oxidation Characteristics of Low Carbon Alloy Steel during Carburizing in Nitrogen-Propane-Air Atmospheres (질소-프로판-공기분위기에서 저탄소 합금강의 침탄시 내부산화 특성에 미치는 가스조성의 영향)

  • Roh, Y.S.;Kim, S.M.;Kim, Y.H.;Kim, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.53-60
    • /
    • 1991
  • This study has been performed to investigate into the internal oxidation characteristics of low carbon steel with respect to the added amount of air in nitrogen-propane atmosphere after gas carburizing for various times at $930^{\circ}C$. The results obtained from the experiment are as follows ; (1) Optical micrographs have shown that the internal oxidation is unlikely to occur in the gas atmosphere without air and that oxidized zone in the outer surface layer is formed in the gas atmosphere with air revealing that the depth of oxidized zone increases with increasing the added amount of air. (2) The formation of internally oxidized zone in the outer surface layer has been found to be inhibited as Ni content increases, i. e, the amount of alloying element increases. (3) The depth of oxidation has been measured to increase with almost parabolically gas carburizing time of up to 6 hours.

  • PDF

Improvement of Surface Properties of Ti-6A1-4V Alloy by Low Pressure Carburizing (저압 침탄에 의한 Ti-6Al-4V 합금의 표면 특성 개선)

  • Kim, J.H.;Park, J.D.;Kim, S.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.191-196
    • /
    • 2003
  • For improvement of the wear performance of Ti alloy, vacuum-carburizing technique was tried for the first time using propane atmosphere. During the low pressure carburizing carbide was formed at the surface and carbon transfer was occurred from the carbide to the matrix. It was found that: (i) surface hardness increased with the reduction of operating pressure and time; (ii) optimum hardness distribution could be obtained with the proper choice of temperature and carbon flux control; and, (iii) case depth was largely influenced not by time but by temperature. The two steps process was recommended for obtaining thick case depth and high surface hardness of Ti alloy. For the low oxygen partial pressure, it was necessary to introduce additional CO gas to the atmosphere.Grain boundary oxidation and non-uniformity could be prevented.

A Study on the MESG of Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 MESG에 관한 연구)

  • Hwang, Kyungyong;Byeon, Junghwan;Rhee, Kyunam;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.30-37
    • /
    • 2016
  • Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.

A Study on the Correlation of MESG and Explosion Pressure (최대실험안전틈새(MESG)와 폭발압력의 상관관계에 대한 연구)

  • Hwang, Kyungyong;Shin, Woonchul;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2016
  • Electrical apparatuses for use in the presence of explosive gas atmospheres have to be special designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of Maximum Experimental Safe Gap(MESG) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of propane and acetylene by the test method and procedure of IEC 60079-20-1:2010.When the minimum MESG is measured, the concentration of propane, acetylene in the air is higher than the stoichiometric point and their explosion pressure is the highest value.

A Study on the Dispersion of Hydrogen Gas in Atmosphere (대기 중 수소가스의 확산거동에 관한 연구)

  • Ahn Bum Jong;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. Therefore, there is a considerable demand for further research concerning the dispersion of hydrogen/air mixture clouds and the possible consequences of their ignition. In this study, the dispersion of hydrogen gas in atmosphere has been analysed with atmospheric condition by concerning the buoyancy of hydrogen. The hazard ranges to wind direction increase with wind speed and the stability of atmosphere. The concentration of hydrogen at just above ground is nearly zero due to buoyancy of hydrogen gas. Therefore, the ignition probability of hydrogen gas cloud is low and the hazard of explosion or fire associated with hydrogen gas is relatively low comparing with the other fuel gas such as propane or butane.

  • PDF

Synthesis of Newel Positive Type Photosensitive Polyimide

  • Ahn, Byung-Hyun;Lee, Dae-Woo;Lee, Jin-Kook
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.247-252
    • /
    • 2001
  • Tricyclic aliphatic dianhydride monomer, tricycle[4.2.2.0]dec-9-ene exo, endo-3,4: 7,8-tetra-carboxylicdianhydride (TCDDA), was synthesized by photochemical reaction and poly(amic acid)s from TCDDA and diamines such as 1,4-bis-(4-aminophenoxy)benzene (BAB), 2,2-bis(4-(4-aminophenoxy) phenyl) propane (BAPP), 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane (BAPHF), bis(4-(4-ami-nophenoxy) phenyl)sulfone (BAPS), and 1,4-bis-(4-aminophenoxy)biphenyl (BABP) were prepared. The inherent viscosities of the poly(amic acid)s were between 0.39 and 0.50 dL/g. The poly(amic acid)s were converted to polyimide films by thermal imidization. The glass transition temperatures (T$\_$g/) of the polyimides were in the range of 201-263$\^{C}$. The thermogravimetric analysis (TGA) thermogram of these polyimides showed the temperatures of 5% weight losses between 375 and 393$\^{C}$ in nitrogen atmosphere. To show their utility for image generation, degradations of these polyimides in UV exposure were investigated by UV spectroscopy.

  • PDF

Color Enhancement by Oxygen Torch in Blue Sapphires (블루사파이어와 루비의 고온산소 화염처리에 의한 색향상)

  • Song Oh Sung;Kim Sang Yeob
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.83-87
    • /
    • 2005
  • We enhanced the color of blue sapphires and rubies successfully by using a oxygen-propane torch flame annealing, which had not been employed so far. We confirmed that about 1 mm-thick de-coloring of the corundum samples were available with 60 minutes flame annealing through eye evaluation, color coordination characterization, and methylene iodide immersion observation. We also suggest that the color centers such as $[Fe_{Al}^{\cdot}]$ may transform into transparent $[Fe_{Al}^{x}],\;[Cr_{A1}^{x}]$ sites with $[V_o^']$ generation at the elevated temperature in oxygen-rich atmosphere by diffusion mechanism. Our results implied that the longer diffusion time and the higher oxygen partial pressure might lead to the better de-coloring enhancement in corundum gem stones.

Prediction of Reaeration Coefficients in Rural Small Streams (농촌 소하천에서의 재폭기 계수 추정)

  • 송인홍;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.163-171
    • /
    • 2001
  • Reaeration phenomena, the physical process of absorption of oxygen from atmosphere, is one of the important parameters of dissolved oxygen simulation in streams. This study was aimed at predicting reaeration coefficients in rural small streams, examining the influence of drop structure on reaeration and the seasonal fluctuation of reaeration coefficients. Reaeration coefficients of five streams including four tributaries of Bokha watershed in Gyeonggi Ichon and Onyang stream in Chungnam Onyang were measured. Constant rate injection (CRI) method using propane and Rhodamine-WT as gas and dye tracer was adopted. Reaeration coefficients ranged between 6.16 and 29.16 reciprocal day, higher than those in USGS database. Prediction equation,$k_2=CV^{0.593}$, was regressed from the measured data at 95% confidence level, with an absolute error of 21.2% and a standard error of 4.0 reciprocal days. Reaeration coefficients of experimental reaches with drop structure showed percentile increases of 42.3 to 159.2 compared to those without it, an indication that drop structure plays an important role on stream reaeration. Taking into consideration the seasonal fluctuation of reaeration coefficients, the values measured during September and October were the highest, mainly due to the removal of aquatic plants. by intensive rainfall during summer.

  • PDF